Published online Mar 26, 2015. doi: 10.4252/wjsc.v7.i2.437
Peer-review started: July 18, 2014
First decision: August 28, 2014
Revised: September 12, 2014
Accepted: December 16, 2014
Article in press: December 16, 2014
Published online: March 26, 2015
Processing time: 245 Days and 17.7 Hours
Neurons derived from embryonic stem cells (ESCs) have gained great merit in both basic research and regenerative medicine. Here we review and summarize the signaling pathways that have been reported to be involved in the neuronal differentiation of ESCs, particularly those associated with in vitro differentiation. The inducers and pathways explored include retinoic acid, Wnt/β-catenin, transforming growth factor/bone morphogenetic protein, Notch, fibroblast growth factor, cytokine, Hedgehog, c-Jun N-terminal kinase/mitogen-activated protein kinase and others. Some other miscellaneous molecular factors that have been reported in the literature are also summarized and discussed. These include calcium, calcium receptor, calcineurin, estrogen receptor, Hox protein, ceramide, glycosaminioglycan, ginsenoside Rg1, opioids, two pore channel 2, nitric oxide, chemically defined medium, cell-cell interactions, and physical stimuli. The interaction or crosstalk between these signaling pathways and factors will be explored. Elucidating these signals in detail should make a significant contribution to future progress in stem cell biology and allow, for example, better comparisons to be made between differentiation in vivo and in vitro. Of equal importance, a comprehensive understanding of the pathways that are involved in the development of neurons from ESCs in vitro will also accelerate their application as part of translational medicine.
Core tip: Neurons are derived from embryonic stem cells (ESCs) and have been a focus of research recently, particularly because of their application in regenerative medicine. Here we review and summarize the signaling pathways that have been reported to be involved in neuronal differentiation of ESCs, mainly in vitro. The inducers and pathways explored include retinoic acid, Wnt/β-catenin, transforming growth factor/bone morphogenetic protein, Notch, fibroblast growth factor, cytokine, Hedgehog, c-Jun N-terminal kinase/mitogen-activated protein kinase and others. Some miscellaneous factors are also explored. Elucidating these signals in detail should make a significant contribution to future progress in stem cell biology and should also accelerate the application of stem cells in translational medicine.