Published online Jul 26, 2020. doi: 10.4252/wjsc.v12.i7.545
Peer-review started: February 28, 2020
First decision: April 26, 2020
Revised: May 13, 2020
Accepted: May 29, 2020
Article in press: May 29, 2020
Published online: July 26, 2020
Processing time: 148 Days and 16.4 Hours
Bone marrow-derived mesenchymal stem cells (BMSCs) play a critical role in the osseointegration of bone and orthopedic implant. However, osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium’s inherent defects. Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate. Here, we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys. We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration, and discuss recent advances in understanding their role in regenerative medicine. We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.
Core tip: Bone marrow-derived mesenchymal stem cells (BMSCs) play a key role in tissue repair after bone and joint injures. The effects of the surface treatment of the orthopedic implants on the osteogenic differentiation of BMSCs are worthy of attention. In this paper, we review recent advances in approaches that promote osseointegration of BMSCs on the surface of orthopedic implants.