Published online Dec 26, 2019. doi: 10.12998/wjcc.v7.i24.4172
Peer-review started: September 18, 2019
First decision: October 14, 2019
Revised: November 27, 2019
Accepted: December 13, 2019
Article in press: December 13, 2019
Published online: December 26, 2019
Processing time: 97 Days and 19.1 Hours
Colorectal cancer (CRC) has been designated a major global problem, especially due to its high prevalence in developed countries. CRC mostly occurs sporadically (75%-80%), and only 20%-25% of patients have a family history. Several processes are involved in the development of CRC such as a combination of genetic and epigenetic alterations. Epigenetic changes, including DNA methylation play a vital role in the progression of CRC. Complex interactions between susceptibility genes and environmental factors, such as a diet and sedentary lifestyle, lead to the development of CRC. Clinical and experimental studies have confirmed the beneficial effects of dietary polyunsaturated fatty acids (PUFAs) in preventing CRC. From a mechanistic viewpoint, it has been suggested that PUFAs are pleiotropic agents that alter chromatin remodeling, membrane structure and downstream cell signaling. Moreover, PUFAs can alter the epigenome via modulation of DNA methylation. In this review, we summarize recent investigations linking PUFAs and DNA methylation-associated CRC risk.
Core tip: Polyunsaturated fatty acids, including ω-3 (eicosapentaenoic acid and docosahexaenoic acid) may have a potential preventive role in colorectal cancer (CRC) by changing DNA methylation. In this review after summarizing the latest knowledge regarding changes in the DNA methylation pattern and its association with CRC, we aim to highlight the link between polyunsaturated fatty acids and DNA methylation in CRC, which is currently an interesting field of research.
