Published online Aug 16, 2017. doi: 10.12998/wjcc.v5.i8.324
Peer-review started: March 29, 2017
First decision: May 8, 2017
Revised: May 16, 2017
Accepted: May 30, 2017
Article in press: May 31, 2017
Published online: August 16, 2017
Processing time: 140 Days and 13.2 Hours
Sepsis is one of the major challenges of today. Although gram-positive bacteria related infections are more prevalent in hospital setting, the highest mortality rate is associated with gram-negative microorganisms especially Enterobacteriaceae. Enterobacteriaceae, including Escherichia coli, Klebsiella spp., Proteus spp., Enterobacter spp. and Serratia spp. Resistance to β-lactams in Enterobacteriaceae is primarily attributed to the production of B-lactamase enzymes with subsequent antibiotic hydrolysis and to a lesser extent by alteration of efflux pump or porins expression. Carbapenem resistant Enterobacteriaceae (CRE) and Acinetobacter baumannii are the most notorious pathogens due to the high incidence of morbidity and mortality especially in the immunocompromised patients in the intensive care unit. The most appropriate antimicrobial therapy to treat CRE is still controversial. Combination therapy is preferred over monotherapy due to its broad-spectrum coverage of micro-organisms, due to its synergetic effect and to prevent development of further resistance. Current suggested therapies for CRE resistance as well as promising antibiotics that are currently under investigation for winning the war against the emerging CRE resistance are reviewed and discussed.
Core tip: Carbapenem resistant Enterobacteriaceae (CRE) is the most notorious pathogens contributing to a significant morbidity and mortality rate in septic patients especially in the intensive care unit. The most appropriate antimicrobial therapy to treat CRE is still controversial. This review is conducted to discuss the effectiveness of available therapies at this moment and to elaborate on different promising drugs that are still under investigation in order to win the combat on rising antimicrobial resistance.