BPG is committed to discovery and dissemination of knowledge
Minireviews
Copyright ©The Author(s) 2025.
World J Clin Oncol. Dec 24, 2025; 16(12): 110351
Published online Dec 24, 2025. doi: 10.5306/wjco.v16.i12.110351
Table 1 Incidence, key studies, and risk factors of hyperprogressive disease
Ref.
Cancer type
HPD incidence
Proposed risk factors
Ferrara et al[16], 2018NSCLC13.8%-26%EGFR mutation, LDH > 250 U/L, liver metastasis, ≥ 2 metastatic sites
Lo Russo et al[14], 2020
Economopoulou et al[17], 2021HNSCC15.4%11q13 chromosomal amplification (CCND1/FGF3), local recurrence
Kim et al[18], 2022GC9.2%-29.4%EGFR/FGF4, MDM2 amplification, liver metastasis, high tumor burden, advanced age
Aoki et al[19], 2024
Hwang et al[22], 2020Urothelial carcinoma6.4%-8%Elevated baseline NLR, high LDH levels
Abbas et al[10], 2019
Yamada et al[13], 2018Melanoma6%-42%Advanced age, elevated baseline inflammatory markers (CRP/NLR)
Zhou et al[20], 2025
Şen et al[21], 2024Bladder cancer12.9%Elevated baseline NLR, advanced age
Renal cell carcinoma4.8%
Table 2 Key regulatory mechanisms and therapeutic strategies in hyperprogressive disease
Regulatory factor
Core mechanism
Clinical significance
Potential intervention strategies
Treg cellsAbnormal activation post PD-1 blockade; inhibits APC function via CTLA-4/CD80/CD86; secretes IL-10/TGF-β to suppress effector T cellsSignificant Treg infiltration in HPD patients, negatively correlated with treatment efficacyTarget CTLA-4 or deplete Tregs (e.g., anti-CCR4 antibodies)
M2-type TAMFc receptor-mediated pro-tumor phenotype conversion by anti-PD-1; recruited via CCR2/CCL2 and maintained by CSF-1R signalingForms synergistic network with Tregs/MDSCs to drive HPDCombine CSF-1R inhibitors with PD-1 blockade (e.g., pexidartinib)
MDSCSuppresses T cell function via IDO/VEGF/MMP9; promotes angiogenesisHigh MDSC levels predict poor ICI response and HPD riskTarget CXCR2 or arginine metabolism (e.g., CB-1158)
T cell exhaustionCompensatory upregulation of TIM-3/CTLA-4 post PD-1 blockade, leading to “secondary exhaustion”Enriched in HPD patients with lost anti-tumor functionMulti-checkpoint targeting (e.g., anti-TIM-3 + anti-PD-1)
CAFUpregulates PD-L1 via IL-6/STAT3; recruits Tregs via CXCL12; promotes M2-TAM differentiationPromotes immunosuppressive microenvironment, positively correlated with HPD progressionTarget TGF-β signaling (e.g., galunisertib) or CAF reprogramming
Inflammatory dysregulationIL-10 inhibits CD28 signaling; IFN-γ induces PD-L1 upregulation; IL-6/TNF-α activate STAT3/NF-κB to promote proliferationCytokine profile predicts HPD riskJAK inhibitors (e.g., ruxolitinib) or IL-6R blockade (tocilizumab)
Metabolic reprogrammingTregs utilize lactate/OXPHOS for survival; CD36 mediates fatty acid metabolism adaptationMetabolic competition exacerbates T cell dysfunctionLactate dehydrogenase inhibitors or CD36 blockade
Genetic alterationsMDM2/MDM4 amplification (p53 degradation); EGFR activation (PD-L1 modification); DNMT3A mutations (epigenetic dysregulation)11-gene mutation signature significantly associated with HPDMDM2 inhibitors (e.g., idasanutlin) or EGFR-TKI combination therapy