Lan YZ, Wu Z, Chen WJ, Yu XN, Wu HT, Liu J. Sine oculis homeobox homolog family function in gastrointestinal cancer: Progression and comprehensive analysis. World J Clin Oncol 2025; 16(1): 97163 [DOI: 10.5306/wjco.v16.i1.97163]
Corresponding Author of This Article
Jing Liu, MD, PhD, Senior Scientist, Department of The Breast Center, Cancer Hospital of Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, Guangdong Province, China. jliu12@stu.edu.cn
Research Domain of This Article
Oncology
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Yang-Zheng Lan, Zheng Wu, Wen-Jia Chen, Jing Liu, Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
Xin-Ning Yu, Hua-Tao Wu, Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
Author contributions: Liu J and Lan YZ designed this study; Lan YZ, Wu Z, Chen WJ, and Yu XN searched the publications; Lan YZ, Wu Z, Chen WJ, Yu XN, Wu HT, and Liu J interpreted the results, constructed the structure of the review, and prepared the tables; Lan YZ prepared the draft of the manuscript; Lan YZ and Wu Z prepared the figures; Liu J revised the manuscript critically; All authors read and approved the final manuscript.
Supported by the National Natural Science Foundation of China, No. 82273457; the Natural Science Foundation of Guangdong Province, No. 2023A1515012762 and No. 2021A1515010846; Special Grant for Key Area Programs of Guangdong Department of Education, No. 2021ZDZX2040; and Science and Technology Special Project of Guangdong Province, No. 210715216902829.
Conflict-of-interest statement: The authors declare that they have no conflicts of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Jing Liu, MD, PhD, Senior Scientist, Department of The Breast Center, Cancer Hospital of Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, Guangdong Province, China. jliu12@stu.edu.cn
Received: May 25, 2024 Revised: September 20, 2024 Accepted: October 20, 2024 Published online: January 24, 2025 Processing time: 158 Days and 7.2 Hours
Abstract
The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from SIX1 to SIX6, each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in SIX genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions. Efforts to target the transcriptional complex of the SIX gene family have emerged as a promising strategy to inhibit tumor development. While the development of inhibitors targeting this gene family is still in its early stages, the significant potential of such interventions holds promise for future therapeutic advances. Therefore, this review aimed to comprehensively explore the advancements in understanding the SIX family within gastrointestinal cancers, focusing on its critical role in normal organ development and its implications in gastrointestinal cancers, including gastric, pancreatic, colorectal cancer, and hepatocellular carcinomas. In conclusion, this review deepened the understanding of the functional roles of the SIX family and explored the potential of utilizing this gene family for the diagnosis, prognosis, and treatment of gastrointestinal cancers.
Core Tip: The sine oculis homeobox homolog gene family, crucial for embryonic development and implicated in tumors, shows promise for targeted therapies in gastrointestinal tumors. Understanding its diverse roles can lead to advances in diagnosis, prognosis, and treatment of gastrointestinal cancers.