BPG is committed to discovery and dissemination of knowledge
Minireviews
Copyright ©The Author(s) 2026. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Diabetes. Feb 15, 2026; 17(2): 114124
Published online Feb 15, 2026. doi: 10.4239/wjd.v17.i2.114124
Gut microbiota dysbiosis, circulating microbial genetic traces, and their role in gestational diabetes
Dinakaran Vasudevan
Dinakaran Vasudevan, Gut Microbiome Division, Scientific Knowledge on Aging and Neurological Ailments (SKAN) Research Trust, Bengaluru 560034, Karnataka, India
Author contributions: Vasudevan D contributed, conceived and wrote the manuscript.
Conflict-of-interest statement: The author declares that he has no conflict of interest.
Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Dinakaran Vasudevan, PhD, Senior Scientist, Gut Microbiome Division, Scientific Knowledge on Aging and Neurological Ailments (SKAN) Research Trust, Happiest Health Office, No.141/2, Gate 4, St. John’s Research Institute, 100 Feet Road, KHB Block, John Nagar, Koramangala, Bengaluru 560034, Karnataka, India. dinakaran.svgev@gmail.com
Received: September 12, 2025
Revised: November 5, 2025
Accepted: December 19, 2025
Published online: February 15, 2026
Processing time: 147 Days and 20.7 Hours
Core Tip

Core Tip: Pregnancy represents a unique metabolic state, where immune tolerance and insulin sensitivity are tightly regulated. Recent evidence suggests that gut microbiota dysbiosis may compromise the intestinal barrier, leading to the release of microbial genetic traces into the bloodstream. These microbial signals can activate host immune pathways and may aggravate systemic inflammation, thereby exacerbating gestational diabetes mellitus. This review highlights emerging insights into the link between gut dysbiosis, microbial translocation into circulation, and the worsening of diabetic outcomes in pregnancy. Understanding this gut-blood axis could open new opportunities for predictive biomarkers and targeted interventions to improve maternal and foetal health.