Published online Jun 26, 2023. doi: 10.4252/wjsc.v15.i6.589
Peer-review started: February 9, 2023
First decision: April 10, 2023
Revised: April 18, 2023
Accepted: May 5, 2023
Article in press: May 5, 2023
Published online: June 26, 2023
Processing time: 137 Days and 8.9 Hours
Tooth loss has become a common problem in human life. Compared with traditional denture restoration, dental tissue engineering has become the most ideal means to solve this problem, and it is also one of the most active research fields of stomatology in recent years. The tooth development involves complex signal pathways. Ecto-mesenchymal stem cells (MSCs) were regarded as the primitive dental cells in the classical theory of tooth development. To date, in-depth studies of the odontogenesis and osteogenesis of MSCs are still lacking.
We contribute to thorough exploration of the mechanism of odontogenesis and osteogenesis to add to the theory of tooth development.
Our study provides novel insights into the biological features of MSCs at the single cell level and the mechanism of Cd271 in regulating odontogenesis and osteogenesis.
We used the maxillary process from mouse embryos as a model to understand the development of maxillary-process-derived MSCs. We applied single cell RNA sequence analysis to elucidate the cellular heterogeneity and explore molecular details. And we verified the findings from single cell sequencing in vitro by lab experience such as cell staining, cell counting and quantitative real time polymerase chain reaction.
Our study reveals: (1) High cellular heterogeneity and molecular details; (2) Significant functional and signaling differences between cell types; (3) Novel subclusters of mesenchymal stem cells; and (4) Crucial cell-cell interactions of mesenchymal subpopulations. Besides, we contribute to thorough exploration of the mechanism of Cd271 in regulating odontogenesis and osteogenesis.
Our study reveals high cellular heterogeneity, molecular details and cell-cell interactions in MSCs. We found significant functional and signaling differences between Cd271 knockout and wildtype MSCs. We clarified that Cd271 is significantly associated with the regulation of mineralization.
We need illustrate that Mdk signaling is involved in the regulatory mechanism of mineralization in future research. And direct mechanisms of Cd271 involved in tooth development are needed in further studies.