Published online May 26, 2015. doi: 10.4252/wjsc.v7.i4.769
Peer-review started: October 14, 2014
First decision: November 27, 2014
Revised: March 17, 2015
Accepted: April 10, 2015
Article in press: April 14, 2015
Published online: May 26, 2015
Processing time: 230 Days and 8.2 Hours
Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice.
Core tip: Fetal membranes are a source of stem cells, namely placenta-derived stem cells (p-SCs), which are in between embryonic and mesenchymal stem cells sharing characteristics with both, such as the capacity to differentiate in all germ layers and the dearth of tumorogenicity. Many preclinical studies have been investigated the potential of p-SC use in different medical areas, such as neurology, cardiology, orthopedics, gastroenterology, and tissue engineering, showing promising results, but also some drawbacks. The present review will focus on different aspects of biological properties and potential clinical uses of p-SCs.