Published online Mar 26, 2015. doi: 10.4252/wjsc.v7.i2.477
Peer-review started: July 29, 2014
First decision: September 16, 2014
Revised: October 27, 2014
Accepted: October 31, 2014
Article in press: November 3, 2014
Published online: March 26, 2015
Processing time: 234 Days and 6.9 Hours
Stem cells represent a promising step for the future of regenerative medicine. As they are able to differentiate into any cell type, tissue or organ, these cells are great candidates for treatments against the worst diseases that defy doctors and researchers around the world. Stem cells can be divided into three main groups: (1) embryonic stem cells; (2) fetal stem cells; and (3) adult stem cells. In terms of their capacity for proliferation, stem cells are also classified as totipotent, pluripotent or multipotent. Adult stem cells, also known as somatic cells, are found in various regions of the adult organism, such as bone marrow, skin, eyes, viscera and brain. They can differentiate into unipotent cells of the residing tissue, generally for the purpose of repair. These cells represent an excellent choice in regenerative medicine, every patient can be a donor of adult stem cells to provide a more customized and efficient therapy against various diseases, in other words, they allow the opportunity of autologous transplantation. But in order to start clinical trials and achieve great results, we need to understand how these cells interact with the host tissue, how they can manipulate or be manipulated by the microenvironment where they will be transplanted and for how long they can maintain their multipotent state to provide a full regeneration.
Core tip: Adult stem cells are useful tools to treat various diseases, but we must first comprehend how they work to use their capacity at maximum. Ageing, inflammation, other stem cells of the host tissue and the co-transplantation with another stem cells type can change their profile and compromise the regeneration process. Having these barriers in mind, several researchers started to look more closely to adult stem cells. In this review we will show some interesting results from experimental and clinical trials at this group of stem cells.