BPG is committed to discovery and dissemination of knowledge
Review
Copyright ©The Author(s) 2025.
World J Gastroenterol. Nov 7, 2025; 31(41): 111174
Published online Nov 7, 2025. doi: 10.3748/wjg.v31.i41.111174
Table 1 Representative targeted drugs and signaling pathways in liver cancer
Representative targeted drugs
Related signaling pathways
SorafenibRas/Raf/MEK/ERK signaling pathway
Apatinib, lenvatinib, bevacizumab, ramelimumabVEGF signaling pathway
Erlotinib, cetuximabEGF signaling pathway
CabozantinibHGF/c-Met signaling pathway
Table 2 Enzymes involved in the process of hepatocellular carcinoma and their role in ferroptosis
Related enzyme
Relevant impacts
Ferroptosis
PGAM1Energy stress/ROS-dependent AKT/LCN2 pathwayInhibitory
NNMTMNA/ROS axisInhibitory
FMO3FMO3/TMAO/STAT3/SLC7A11/GPX4 axisPromotion
KDM4CMDM2/P53/SLC7A11/GPX4 axisInhibitory
DHCR7TMEM147/STAT2/DHCR7/27HC axisInhibitory
USP8USP8/OGT/SLC7A11 signaling pathway, Wnt/β-catenin/GPX4 axisInhibitory
PRMT9HBx/PRMT9/HSPA8/CD44 axisInhibitory
HMOX1Nrf2/HO-1/GPX4 axisPromotion
ENO1ENO1-IRP1-Mfrn1 pass-throughInhibitory
FASNFASN/HIF1α/SLC7A11 pass-throughPromotion
APE1AKT/GSK3β/Nrf2/SLC7A11/GPX4 axisInhibitory
GSTZ1Keap1/Nrf2/GPX4 pathwayPromotion
PSTKTrxR/Trx/GSH/GPX4 pathwayInhibitory
QSOX1EGFR/Nrf2/GPX4 pathwayPromotion
RNA helicase DDX5Wnt/β-catenin/GPX4 signaling pathwayPromotion
DUSP4YTHDC1/FTL/FTH1/Lipid ROS pathwayInhibitory
MerTKERK/SP1/SLC7A11 pathwayInhibitory
UCHL3Ub-proteasome/Wnt/β-catenin/GPX4 pathwayInhibitory
AKR1C3Hippo/YAP/TAZ/SLC7A11 pathwayInhibitory
Deubiquitinating enzyme (EIF3H)OGT/Lipid ROS/GSH pathwayInhibitory
USP24K48/Beclin1/FPN pathwayPromotion
LHPPLHPP/P13K/AKT pathwayPromotion
Table 3 A review related to artificial intelligence prediction models for liver cancer
Ref.
Model name
Model type
Aim
Dataset
Model checking
Major limitation
[88]Hybrid modelLogistic regressionMVITotal: 773. Training set: 334. Internal test set: 142. External test set: 141Internal test set: AUC = 0.86. External test set: AUC = 0.84Selection bias; most enrolled patients had a virus-related HCC
[89]DECTLogistic regressionMTMTotal: 262. Training set: 146. Internal test set: 35. External test set: 81Internal test set: AUC = 0.87. External test set: AUC = 0.89Different centers; overfitting
[90]ABRS-PCLAMBiomarker of sensitivity to atezolizumab-bevacizumabTotal: 122. ABRS-P-high: 74. ABRS-P-low: 48Retrospective
[91]AI-based pathology modelsCLAMPredict the activation of 6 immune geneTotal: 336AUC: 0.78-0.91Needs further validation with clinical data
[92]PLAN-B-DFGBMHCC predictionTraining set: 4188. Internal test set: 1397. External test set: 2883CI: 0.91Impose radiation exposure; generalizability limited
[93]AI prediction model for liver cancer recurrenceMLPEvaluate the survival of patients with HCCTotal: 912AUC: 0.862Pack of longitudinal data
[94]UBE2S related modelMLPEvaluate the survival of patients with HCCTotal: 370. Training set: 224. Test set: 146The 1-, 2-, 3-year survival AUC values were 076, 0.72, 0.68
[95]PAGE-BCox regressionRisk prediction toolTotal: 2963CI: 0.77The lack of systematic screening information on HDV coinfection
[96]SCHMOWDERSCHMOWDERPredicting patient survival after HCC recurrence and surgeryThe transplant cohort: 300. The resection cohort: 169The transplant cohort: CI = 0.83 (RFS); CI = 0.87 (DSS). The resection cohort: CI = 0.64 (RFS); CI = 0.77 (DSS)
[97]MoRAL-AIDNNRecurrenceTotal: 563. Training set: 349. Test set: 214CI: 0.75Single-region HBV cohort
[98]R3-AFPLogisticValidationTotal: 508CI: 0.75Restricted to SiLVER trial
[99]Reticulin-CNNCNNPrognosisTotal: 105CI > 0.7Small sample; missing HBV/HCV data
[100]IR-lncRNACox/LASSORecurrenceTotal: 319. Training set: 161. Test set: 158CI: 0.732Needs external validation
[101]CT-DCNNDCNNDiagnosisTraining set: 7512. Internal test set: 385. External test set: 556The internal test set: AUC = 0.887. The external test set: AUC = 0.883Central China predominance
[102]TIL scoreCoxQuantifyTraining set: 124. Test set 1: 82. Test set 2: 54Training set: CI = 0.770. Test set 1: CI = 0.769. Test set 2: CI = 0.712Slide alignment and selection bias
[103]DSFRLogistic regressionPredict early recurrenceTotal: 208. Training set: 180. Test set: 28Training set: AUC = 0.782. Test set: AUC = 0.744Small sample
[104]AiforiaAI-based histological modelHistological outcomeTotal: 101rs = 0.72
[105]LDADiscriminant analysisMVITotal: 140. Training set: 98. Test set: 42Training set: AUC = 0.995. Test set: AUC = 0.913Small size; 2-center variability
[106]Random forest modelRandom forest modelWaitlist DropoutTotal: 15444C-statistic: 0.74Retrospective; not externally validated
[107]Multiple ML modelsML (DT, SVM, NN, etc.)SurvivalTotal: 393Early-stage: Recall = 91% (6 months). Advanced: Accuracy = 92% (3 years)Small, single center, retrospective
[108]CNNCNNPredicting the outcome of ICIs treatmentTraining set: PD = 197; PR = 271; SD = 342F1 score 698%
YOLOYOLO
[109]Cox PH modelCox regressionRiskTotal: 790AUC = 0.86Retrospective; small sample
[110]CARTDecision treeHCCTraining set: 55AUC: 0.950Small sample; no validation
[111]nVRRadiomicsRecurrenceTraining set: 130. Test set: 57Training set: AUC = 0.759. Test set: AUC = 0.765Retrospective; TACE method bias
[112]3D-ResNet50Deep learningGradeTotal: 858. Training set: 524. Validation set: 131. External test set: 65. Internal temporal test set: 138Training set: AUC = 0.82. Validation set: AUC = 0.825. External test set: AUC = 0.78. Internal temporal test set: AUC = 0.81Retrospective; single-phase imaging
[113]DCNNDeep learningPrognosisTotal: 236Training set: CI = 0.735 (RFS); CI = 0.712 (OS). Test set: CI = 0.718 (RFS); CI = 0.740 (OS)Single-center; small sample
[114]MAPL-5MLHCCTraining set: 1182. External test set: 562Training set: AUC = 0.784; balanced accuracy = 0.712. External test set: AUC = 0.862; balanced accuracy = 0.771Needs external validation
[115]LightGBMRadiomicsBiomarkerTraining set: 424. Test set: 102Training set: AUC = 0.866. Test set: AUC = 0.824Small sample; no multicenter
[116]Random forestRadiomicsGradeTraining set: 137. External test set: 28Training set: AUC = 0.80. External test set: AUC = 0.70Single-vendor MRI; limited external data
[117]CRNNDeep learningSurvivalTotal: 207Training set: 0.777. Test set: 0.704Small sample; excluded non-lung metastases