Published online Feb 21, 2020. doi: 10.3748/wjg.v26.i7.717
Peer-review started: November 18, 2019
First decision: December 23, 2019
Revised: January 7, 2020
Accepted: January 11, 2020
Article in press: January 11, 2020
Published online: February 21, 2020
Processing time: 94 Days and 18.6 Hours
Chronic constipation is a gastrointestinal functional disease that seriously harms physical and mental health and impacts the quality of life of patients. Its incidence rate is 2%-27%. Slow transit constipation (STC) is a common type of chronic functional constipation, accounting for 10.3%-45.5% of such cases. Scholars have performed many studies on the pathogenesis of STC. These studies have indicated that the occurrence of STC may be related to multiple factors, such as dysfunction of the enteric nervous system, interstitial cells of Cajal (ICC) damage, and changes in neurotransmitters regulating intestinal peristalsis.
To investigate the role of Tenascin-X (TNX) in regulating the TGF-β/Smad signaling pathway in the pathogenesis of STC.
This study included an experimental group and a control group. The experimental group included 28 patients with severe colonic STC, and the control group included 18 patients with normal colon tissues. Immunohistochemistry (IHC) was used to detect c-Kit, a specific marker of the ICC. Western blot, immunofluorescence, and IHC were used to detect the localization and expression of TNX and TGF-β/Smad.
IHC showed that the number of ICC with positive c-Kit expression was significantly reduced in the colon of STC patients (22.17 ± 3.28 vs 28.69 ± 3.53, P < 0.05) and that the distribution was abnormal. Western blot results showed that c-Kit and Smad7 levels were significantly decreased in the colon of STC patients (c-kit: 0.462 ± 0.099 vs 0.783 ± 0.178, P < 0.01; Smad7: 0.626 ± 0.058 vs 0.799 ± 0.03, P < 0.01) and that TNX and Smad2/3 levels were higher in the STC group (TNX: 0.868 ± 0.028 vs 0.482 ± 0.032, P < 0.01). There was no significant difference in TGF-β between the two groups (0.476 ± 0.028 vs 0.511 ± 0.044, P = 0.272). Pearson correlation analysis showed that the TNX protein exhibited a strong correlation with Smad2/3 and Smad7 (P < 0.05, |R| > 0.8) and TGF-β (P < 0.05, |R| = 0.7).
The extracellular matrix protein TNX may activate the TGF-β/Smad signaling pathway by upregulating the Smad 2/3 signaling protein and thereby induce slight or complete epithelial stromal cell transformation, leading to an abnormal distribution and dysfunction of ICC in the diseased colon, which promotes the occurrence and development of STC.
Core tip: The extracellular matrix protein Tenascin-X may activate the TGF-β/Smad signaling pathway by upregulating the Smad2/3 signaling protein and thereby induce slight or complete epithelial stromal cell transformation, leading to an abnormal distribution and dysfunction of interstitial cells of Cajal in the diseased colon, which promotes the occurrence and development of slow transit constipation.