Published online Jun 14, 2020. doi: 10.3748/wjg.v26.i22.2948
Peer-review started: December 30, 2019
First decision: January 19, 2020
Revised: May 13, 2020
Accepted: May 26, 2020
Article in press: May 26, 2020
Published online: June 14, 2020
Processing time: 167 Days and 1.1 Hours
The pancreas became one of the first objects of regenerative medicine, since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted. The number of people living with diabetes mellitus is currently approaching half a billion, hence the crucial relevance of new methods to stimulate regeneration of the insulin-secreting β-cells of the islets of Langerhans. Natural restrictions on the islet regeneration are very tight; nevertheless, the islets are capable of physiological regeneration via β-cell self-replication, direct differentiation of multipotent progenitor cells and spontaneous α- to β- or δ- to β-cell conversion (trans-differentiation). The existing preclinical models of β-cell dysfunction or ablation (induced surgically, chemically or genetically) have significantly expanded our understanding of reparative regeneration of the islets and possible ways of its stimulation. The ultimate goal, sufficient level of functional activity of β-cells or their substitutes can be achieved by two prospective broad strategies: β-cell replacement and β-cell regeneration. The “regeneration” strategy aims to maintain a preserved population of β-cells through in situ exposure to biologically active substances that improve β-cell survival, replication and insulin secretion, or to evoke the intrinsic adaptive mechanisms triggering the spontaneous non-β- to β-cell conversion. The “replacement” strategy implies transplantation of β-cells (as non-disintegrated pancreatic material or isolated donor islets) or β-like cells obtained ex vivo from progenitors or mature somatic cells (for example, hepatocytes or α-cells) under the action of small-molecule inducers or by genetic modification. We believe that the huge volume of experimental and clinical studies will finally allow a safe and effective solution to a seemingly simple goal-restoration of the functionally active β-cells, the innermost hope of millions of people globally.
Core tip: The review discusses the most promising strategies for regenerative medicine to stimulate the regeneration or replacement of the islet of the pancreas. The “regeneration” strategy aims to maintain a preserved population of β-cells through replication, or evoke the intrinsic adaptive mechanisms. The “replacement” strategy implies transplantation of β-cells or β-like cells obtained ex vivo from progenitors or mature somatic cells (hepatocytes or α-cells). We believe that the huge volume of experimental and clinical studies currently under way will finally allow a safe and effective solution to simple goal-restoration of the active β-cells.