BPG is committed to discovery and dissemination of knowledge
Systematic Reviews
Copyright ©The Author(s) 2025.
World J Meta-Anal. Dec 18, 2025; 13(4): 112603
Published online Dec 18, 2025. doi: 10.13105/wjma.v13.i4.112603
Table 1 Summary of study design with inclusion and exclusion criteria

Inclusion criteria
Exclusion criteria
Population/problemPatients primarily diagnosed with dengue fever through: Serum non-structural protein 1 antigen positivity or IgM and IgG antibodies to dengue virus or dengue virus RNA by real-time reverse transcriptase polymerase chain reactionPatients diagnosed with other febrile illnesses
Intervention/exposurePrognostic clinical scoring systems for dengue fever. Predicted outcomes of the models include any possible clinical endpoints of Dengue Fever such as dengue severity, critical outcomes, probability of intensive care unit outcomes or mortality ratesScores for purposes other than prognostication e.g. diagnosis etc. Scores that are not specific to dengue fever. Non-clinical scoring systems
Control/comparisonNilNil
OutcomeAccuracy of prognostic scoringNil
Study designArticles in English/translated into English Observational studies (prospective and retrospective cohort). Randomised controlled trialsArticles not written in English/no available English translation
Systematic reviews and meta-analyses. Review articles. Case series, case reports
Table 2 Characteristics of included studies
Ref.
Period of data collection
Location
Study type
Model
Validation
Sample size
Chi et al[38], 20231 July 2015 to 30 November 2015Tainan, TaiwanRetrospective cross-sectionalMultivariate binary logistic regression with significant coefficient transformed to scores by inverse odds ratioExternal validation (separate region and time)701
Yang et al[37], 2023August 15, 2019 and September 30, 2019Dhaka, BangladeshCross-sectionalCART model used on univariate and multivariate logistic regression modelsInternal validation via split-sample with random assignment (80% training sample, 20% hold-out sample)1090
Gayathri et al[10], 2023Model: October 2019; Validation: September 2019 to January 2021Chennai, IndiaProspective cohortBinary logistic regression to develop prediction severity model with forward stepwise method in 3 steps to identify 3 significant variables and Nagelkerke square to quantify influence of variablesTemporal validation on 2021 data (n = 312)312
McBride et al[11], 2022June 2019 to June 2021Ho Chi Minh city, VietnamProspective observational cohortmSOFA score and delta excluding bilirubin calculated from day 0 and 2. Brier score rescaled from 0 to 1Internal validation via bootstrap procedure with 500 resamples with replacement124
Bhaskar et al[12], 2022January 2016 to December 2020Manipal, IndiaProspective case cohortLogistic regression model of significant variablesNo validation303
Srisuphanunt et al[23], 20222017 to 2019Bangkok, ThailandRetrospective cohortPotential predictor tested for trend with nonparametric methodInternal validation (method not mentioned)302
Sachdev et al[13], 2021July 1, 2016 to December 31, 2019New Deli, IndiaProspective cohortMultivariate logistic regression model to identify independent risk factors, stepwise entry of new terms into modelNo validation78
Marois et al[24], 2021January 1, 2017 to July 31, 2017New CaledoniaRetrospective cohortPredictive model built using multiple logistic regression and descending stepwise analysisInternal validation via k-fold cross-validation (k = 10)383
Devarbhavi et al[25], 2020January 2014 to December 2017Bangalore, IndiaRetrospective cohortMELD score, arterial pH, lactate used to generate ROC with C-statisticsNo validation36
Tangnararatchakit et al[26], 20202004 to 2018Bangkok, ThailandRetrospective cohortDaily Dengue severity score created in Phase I (n = 191)Temporal validation on Phase II (n = 51)242
Lee et al[27], 2018Kaohsiung Chang Gung Memorial Hospital: 2022 to 2015; Kaohsiung Medical University Hospital[2]: 2009 to 2013Kaohsiung, TaiwanRetrospective cohortMultivariate logistic regression model and assigning points by dividing its regression coefficient by smallest coefficient in model (rounded to nearest whole number)No validation1068
Phakhounthong et al[28], 2018October 12, 2009 to October 12, 2010Siem Reap, CambodiaRetrospective cohortCART tree constructed with J48 algorithm to generate decision treeInternal validation via 10-fold cross-validation by Weka sed to estimate out-of-sample accuracy (split data into 10, 9 for training, 1 for testing). Multiple rounds of cross-validation performed using different partitions198
Park et al[14], 2018Queen Sirikit National Institute of Child Health[3]: 1994 to 1997, 1999 to 2002, 2004 to 2007; Kamphaeng Phet Provincial Hospital[4]: 1994 to 1997Bangkok, Thailand; Nai Mueang, ThailandProspective cohortSEM using data from n = 257 with complete dataInternal validation via multiple imputation via Markov-chain Monte Carlo method to create 50 imputed datasets without missing data on n = 1244 to assess Sn744
Md-Sani et al[29], 2018September 8, 2022 to November 18, 2022Kuala Lumpur, MalaysiaRetrospective cohortVariable selection via 5-fold cross-validated Lasso regression used to build logistic regression modelInternal validation via cross-validation199
Suwarto et al[30], 2018January 2011 to March 2016Jarkarta, IndonesiaRetrospective cohortDengue Score (Suwarto et al[18], 2016)External validation207
Hsieh et al[15], 2017July 1, 2015 to December 31, 2015Tainan, TaiwanProspective cohortUnivariate and multivariate with binary variables Cox model to identify predictive factors for mortality with cut-off values selected using Youden indexNo validation625
Huang et al[35], 2017September 1, 2015 to December 31, 2015Tainan, TaiwanCase controlUnivariate analysis and Multivariate logistic regression analysis to investigate independent predictors for 30-day mortality. Novel prediction score developed by assigning a score of 1 to each independent variableInternal validation via bootstrapping method by generating 1000 hypothetical study population using random sampling from study sample2358
Fernández et al[31], 20172009 to 2010Tegucigalpa and San Pedro Sula, HondurasRetrospective cohortUnivariable analysis and multivariable logistic regression analysis using forward stepwise selection to construct a predictive model for severe dengueInternal validation via bootstrap technique (sampling with replacement using 320 individuals sampling 1000 times)320
Nguyen et al[16], 2017October 1, 2010 to December 31, 2013Southern VietnamProspective cohortLogistic regression to develop prognostic modelInternal validation via "leave-one-site-out cross validation" (develop algorithm on all but 1 study site and validate using that study site) and Temporal validation2060
Djossou et al[17], 2016March 17, 2013 to September 30, 2013Cayenne, French GuianaProspective cohortFinal model include variables with significant association in single covariable analysisInternal validation via bootstrapping 1000 replications806
Lee et al[32], 2016Kaohsiung Chang Gung Memorial Hospital: July 1, 2002 to May 31, 2015; Kaohsiung Medical University Hospital[6]: 2009 to 2011Kaohsiung, TaiwanRetrospective cohortSignificant variables in univariate analysis entered into multivariate logistic regression and point assignment calculated by dividing regression coefficient by smallest coefficient in modelTemporal validation (model set before 31 Jul 2014 n = 1063, validation set after Aug 1 2014 n = 190)1253
Suwarto et al[18], 2016March 2010 to August 2015Jarkarta, IndonesiaProspective cohortVariables entered into multiple regression analysis using backward selection algorithm to estimate coefficient and independent diagnostic predictors and converted into simplified risk score systemValidation published separately[30]172
Lam et al[19], 20152003 to 2009Ho Chi Minh City, VietnamProspective cohort Univariate and multivariate analysis via logistic regression and model simplified using stepwise backwards model selection based on Akaike Information CriterionTemporal validation (model from n = 939 enrolled before 2009 and validated on 268 enrolled during 2009) and internal validation via repeated 10-fold cross-validation1207
Pang et al[36], 2014January 1, 2004 to December 31, 2008SingaporeCase controlUnivariate and multivariate conditional logistic regression performed to assess associationNo validation135
Pongpan et al[33], 20142007 to 2010Phrae, Thailand; Lamphun, Thailand; Chiang Mai, ThailandRetrospective cohortScoring system (Pongpan et al[34], 2013)External validation400
Pongpan et al[34], 20132007 to 2010Nakorn Sawan, Thailand; Kampaeng Phet, Thailand; Uttaradit, ThailandRetrospective cohortScoring system analysed by multivariable ordinal logistic regression and assigned item scores derived from coefficient transformationValidation published separately[33]777
Leo et al[20], 2013January 2010 to September 2012SingaporeProspective cohortVariables selected from World Health Organization[7] Warning SignsExternal validation499
Diaz-Quijano et al[21], 2010Not reportedBucaramanga, ColombiaProspective cohortRisk score based on independent predictors and risk group formedNo validation729
Potts et al[22], 2010Queen Sirikit National Institute of Child Health: 1994 to 1997, 1999 to 2002, 2004 to 2007; Kamphaeng Phet Provincial Hospital: 1994 to 1997Bangkok, Thailand; Kamphaeng Phet, ThailandProspective cohortCART analysis with age, gender, and clinical laboratory data to establish a diagnostic decision treeInternal validation via k-fold cross validation method (k = 5) of each tree582
Table 3 Baseline patient characteristics, n (%)/mean ± SD
Ref.
Paediatrics only
n
Age
Gender (male)
Ethnicity
Social demographics
Onset
Presentation
Chi et al[38], 2023No70154.1 ± 19.2363 (51.8)NilNilNilFever, nausea, vomit, bleeding, fatigue, hyporexia, abdominal pain (data not available)
Yang et al[37], 2023No1090< 18 years: 318 (29.2). 18-39 years: 553 (50.7). ≥ 40 years: 219 (20.1)652 (59.8)NilUneducated: 28 (26.1). Primary education: 339 (31.1). Secondary education: 306 (28.1). Tertiary education: 112 (10.3). Missing education data: 49 (4.5). Low income (< 15000 BDT per month): 34 (31.4). Low-mid income (15000-25000 BDT per month): 404 (37.1). High-mid income (25000-50000 BDT per month): 206 (18.9). High income (≥ 50000 BDT per month): 71 (6.5). Missing income data: 67 (6.1). Slum: 384 (35.2). Flat: 540 (49.5). House: 125 (11.5). Missing residence data: 41 (3.8)NilFever, myalgia, vomit, headache, abdominal pain
Gayathri et al[10], 2023Yes3126.4 ± 3.44196 (62.8)NilNilNilFever, bleeding, vomit, fatigue, abdominal pain
McBride et al[11], 2022No12424.5, IQR: 20-3263 (50.8)NilNilMedian 5 days (range 3-7)Nil
Bhaskar et al[12], 2022Yes303≤ 6 years: 60 (19.8). > 6 years: 243 (80.2)161 (53.1)NilNilNilHeadache, myalgia, abdominal pain, rash, vomit, dyspnoea
Srisuphanunt et al[23], 2022No30224.9 ± 17.3154 (50.1)NilNilNilNil
Sachdev et al[13], 2021Yes7810, IQR: 6.2-1249 (62.8)NilNil4.44 ± 2.15Nil
Marois et al[24], 2021No38332, IQR: 34174 (45.4)Melanesian: 141 (36.7). European: 86 (22.5). Polynesian: 68 (17.8). Others: 63 (17.4)Tobacco: 105 (27.4). Cannabis: 19 (4.9). Kava: 15 (3.9). Alcohol (> 3 units/day): 9 (2.3)Median 4 days, IQR: 3Fever, arthralgia, myalgia, eye pain, headache, diarrhoea, nausea, vomit, rash, third spacing, fatigue, hepatomegaly, abdominal pain
Devarbhavi et al[25], 2020No3632.31 ± 17.0420 (55.6)NilNilRange 3 to 7 daysNil
Tangnararatchakit et al[26], 2020Yes24210.6 ± 3.9137 (56.6)NilNilNilNil
Lee et al[27], 2018No106852, IQR: 18-91513 (47.2)NilNilMedian 3 days (range 1-10)Fever, myalgia, arthralgia, eye pain, rash, headache, cough, diarrhoea, vomit, fatigue, abdominal pain
Phakhounthong et al[28], 2018Yes1981 month-< 1 year: 56 (28.2). 1 year < 5 year: 59 (29.8). ≥ 5 years: 83 (41.9)107 (54.0)NilNil< 2 daysFever, vomit, bleeding, dyspnoea, hepatomegaly, headache, rash, altered mental state
Park et al[14], 2018Yes744Validation set not reported)NilNilNil< 3 daysFever
Md-Sani et al[29], 2018No19930.8, IQR: 24.7-41.3127 (63.8)NilNilNilFever, vomit, bleeding, fatigue, hepatomegaly, third spacing
Suwarto et al[30], 2018No20733, IQR: 23-4691 (44)NilNilNilFever
Hsieh et al[15], 2017No62572.3 ± 9.346 (61.3)NilNilNilNil
Huang et al[35], 2017No235847.8 ± 21.91197 (50.8)NilStay with family: 2296 (97.4). Stay alone: 53 (2.2). Long-term care: 9 (0.4). Tobacco: 47 (2). Alcoholism: 34 (1.4)NilFever, arthralgia, myalgia, eye pain, headache, nausea, vomit, bleeding, rash, hyporexia, diarrhoea, fatigue, cough, dizzy, altered mental state, dyspnoea, chest pain, abdominal pain
Fernández et al[31], 2017No32022.4 (missing SD)181 (56.6)NilNil≥ 6 daysFever, headache, eye pain, arthralgia, myalgia, rash, vomit, hyporexia
Nguyen et al[16], 2017Yes2060Given as 2 cohorts in median IQRNilNilNil< 3 daysFever
Djossou et al[17], 2016No806< 1 year: 23 (2.9). 1-15 year: 294 (36.5). 16-65 year: 480 (59.6). > 65 years: 15 (1.9)408 (50.2)NilNilMedian 2 daysMyalgia, arthralgia, bleeding, rash, vomit, abdominal pain (data not available)
Lee et al[32], 2016No1253Given as 2 cohorts in median IQR595 (47.5)NilNilDerivation cohort
Median 4 days, range 1-15. Validation cohort. Median 4 days, range 1-13
Nil
Suwarto et al[18], 2016No17222, IQR: 11-3389 (51.7)NilNil3 daysFever
Lam et al[19], 2015Yes120710, IQR: 7-12645 (53)NilNilMedian 5 days (IQR: 5-6)Fever, bleeding, third spacing, abdominal pain
Pang et al[36], 2014No135Given as 2 cohorts in median IQR88 (65.2)Chinese: 98 (72.6). Malay: 7 (5.2). Indian: 17 (12.6). Others: 13 (9.6)NilCases: 3 days (IQR: 3-5). Control: 5 days (IQR: 4-5)Nil
Pongpan et al[33], 2014Yes40010.3 ± 3.4223 (55.8)NilNilNilVomit, cough, bleeding, hepatomegaly, headache, myalgia, rash, third spacing, abdominal pain
Pongpan et al[34], 2013Yes7779.6 ± 3.3376 (48.4)NilNilNilHepatomegaly, headache, myalgia, vomit, cough, rash, third spacing, bleeding, abdominal pain
Leo et al[20], 2013No499Given as 2 cohorts in median IQR396 (79.4)NilNilED cohort. Median 6 days (5%-95% 3-8). Outpatient cohort. Median 6 days (5%-95% 3-8)Nil
Diaz-Quijano et al[21], 2010No72925.8 ± 15.9NilNilNilMedian: 7 days; range: 4-10Fever, headache, eye pain, myalgia, arthralgia, hyporexia, cough, rash, vomit, diarrhoea, bleeding, abdo pain
Potts et al[22], 2010Yes5828.7 ± 0.5NilNilNilMean 2.15 daysFever
Table 4 Results of prognostic score performance
Ref.
Model
Score components
Predicted outcomes
Threshold
Sensitivity (%)
Specificity (%)
Leo et al[20], 2013Number of warning signsAbdominal pain; Persistent vomiting; Clinical fluid accumulation; Mucosal bleeding; Hepatomegaly (> 2 cm); ↑ in hematocrit; rapid ↓ of plateletDHF I-IV and severe dengueNil1 warning sign: DHF I-IV 79%. DHF II-IV 100%. Severe dengue 100%. 2 warning signs: DHF I-IV 33%, DHF II-IV 47%, Severe dengue 46%. 3 warning signs: DHF I-IV 6%, DHF II-IV 9%, Severe dengue 8%1 warning sign: DHF I-IV 52%, DHF II-IV 52%, Severe dengue 48%. 2 warning signs: DHF I-IV 88%, DHF II-IV 88%, Severe dengue 85%. 3 warning signs: DHF I-IV 99%, DHF II-IV 99%, Severe dengue 98%
Chi et al[38], 2023Multivariable binary logistic regressionClinical presentations; age; chronic comorbidities, such as DM, CKD, chronic heart failure, and neoplasms; and abnormal laboratory findingCritical outcomes early identification and treatment495.7%76.8%
Lee et al[27], 2018Regression equationSerum bicarbonate; ALT; age; genderMortality294.9% 85.2%
Suwarto et al[30], 2018NomogramHct; Serum Albumin; Platelet count; AST ratioPleural effusion and/or ascites≥ 292.45 74.26
Huang et al[35], 2017NomogramElderly age (≥ 65 years); Hypotension (systolic blood pressure < 90 mmHg); hemoptysis; DM; chronic bedriddenMortality1 and 3Score ≥ 1: 91.2%Score ≥ 3: 99.7%
Sachdev et al[13], 2021Outcome predictor variablesSGPT; S lactate; PRISM 12 (paediatric risk of mortality at 12 hours admission); VIS (vasopressor inotrope score); FB (fluid balance % at 24 hours)MortalityS lactate: 2.73 mmol/L, VIS: 22.5S lactate: 0.90VIS: 0.948
Pang et al[36], 2014Prognostic index (equation)Neutrophil proportion; ALT; serum urea levelICU requirementP = −1.4 88.288.9
Nguyen et al[16], 2017NomogramVomiting; PLT; n × AST ULN; NS1 +veSevere DengueNil0.870.88
Gayathri et al[10], 2023Binary logistic regressionBedside dengue severity score = -1.297 + 4.234 (narrow pulse pressure) + 1.284 (mucosal bleed) + 0.489 (third space fluid loss)Severe dengueNil86.75% 98.25%
Tangnararatchakit et al[26], 2020NomogramAge ≤ 1 year; aspirin or nonsteroidal drug ingestion; underlying disease such as hemolytic anaemia and congenital heart disease; additional vital signs; urine output; bleeding sites; amounts of the required crystalloid; colloid and blood components; inotropic drug administration; respiratory support and invasive proceduresSubsequent threatened shock and profound shock≥ 1286.21 84.26
Marois et al[24], 2021Sex-specific multivariable predictive modelFemale model: Age class; Medical history; Hypertension (treated/untreated); Symptoms-Mucosal bleeding, clinical liquid accumulation, skin rash (except purpura); last biological results-Platelets < 30 g/L, ALT > 10 N. Male model: Age class; Risky behaviour; Alcohol abuse > 3 u/day; symptoms mucosal bleeding; last biological results-Platelets < 30 g/L, ALT > 10NSevere dengueNilFemale model: 84.5%. Male model: 84.5%Female model: 78.6%. Male model: 95.5%
Bhaskar et al[12], 2022Multivariable binary regression modelPCV; Platelet count; ALT; Highest WBC; HypotensionComplicated dengue in paediatric patients284.172.5
Suwarto et al[18], 2016NomogramHct; Serum Albumin; Platelet count; AST ratioPleural effusion/or ascites≥ 282.47 70.42
Devarbhavi et al[25], 2020MELD scoreAdmission lactateMortalityNil81%74%
Park et al[14], 2018Structural equation modellingAny dengue illness; AST, WBC; %lymphocytes; PLT; tourniquet test at fever day -3 and -1DF, DHF vs DSS0.58780.480.4
Fernández et al[31], 2017Univariable and multivariable logistic regression Headache; petechiae; ascites; platelets < 50000 platelets/mm3 at baselinePlasma leakage7%76.470.3
Lee et al[32], 2016Multivariable model based on disease durationModel 1 age (≥ 65 years vs < 65 years); minor gastrointestinal bleeding (present vs absent); leukocytosis WBC > 10 × 109 cells/L (present vs absent); Platelet count ≥ 100 × 109 cells/L (present vs absent)Severe dengue170.3%90.6%
Phakhounthong et al[28], 2018CART (classification and regression tree)HCT; GCS; urine protein; Cr; PLTSevere dengue0.50.6050.65
Djossou et al[17], 2016Logistic regression
model
Hematocrit increase; protein concentration; sodium concentration; lymphocyte count; age; aches; extensive purpura; Rash; serous effusion; bleedingShockNil48.294.2
Yang et al[37], 2023CART and random forest modelAge; dyspnoea; plasma leakage; lowest plateletSevere dengueNilNilNil
McBride et al[11], 2022NomogramSpO2/FiO2; platelet count; Bilirubin level; MAP/PP; Adrenergic agents; GCS score; Creatinine and urine outputDuration of ICU admission
Requirement for organ support (mechanical ventilation, vasopressors, renal replacement therapy). Duration of intravenous fluid therapy. Death
NilNilNil
Srisuphanunt et al[23], 2022NomogramAlbumin; AST; ALT; PLT; PTT; DENV IgMSevere dengueNilNilNil
Md-Sani et al[29], 2018Regression equationSerum bicarbonate; ALT; age; genderMortalityNilNilNil
Hsieh et al[15], 2017Multivariate Cox modelAPTT; SOFA; APACHE II scoresMortalityNilNilNil
Lam et al[19], 2015NomogramAge; day of illness; pulse rate; temperature; hematocrit; hemodynamic indexProfound DSS, Recurrent shockNilNilNil
Pongpan et al[33], 2014NomogramAge; Hepatomegaly; SBP; WBC; PLTDF, DHF vs DSSNilNilNil
Pongpan et al[34], 2013NomogramAge; Hepatomegaly; HCT; SBP; WBC; PLTDF, DHF vs DSS NilNilNil
Diaz-Quijano et al[21], 2010Binomial regressionAge between 12 and 45 years, rash; vomiting; temperature > 38 °C; leukocyte count < 4500/L; platelet count < 90.000/L BleedingNilNilNil
Potts et al[22], 2010CART(1) WBC; %monocytes; PLT; HCT; and (2) WBC; AST; %neutrophil; PLT; AgeSevere Dengue (DSS vs DHF Grade 3/4, or PEI > 15)NilNilNil