Copyright
©The Author(s) 2025.
World J Meta-Anal. Dec 18, 2025; 13(4): 112603
Published online Dec 18, 2025. doi: 10.13105/wjma.v13.i4.112603
Published online Dec 18, 2025. doi: 10.13105/wjma.v13.i4.112603
Table 1 Summary of study design with inclusion and exclusion criteria
| Inclusion criteria | Exclusion criteria | |
| Population/problem | Patients primarily diagnosed with dengue fever through: Serum non-structural protein 1 antigen positivity or IgM and IgG antibodies to dengue virus or dengue virus RNA by real-time reverse transcriptase polymerase chain reaction | Patients diagnosed with other febrile illnesses |
| Intervention/exposure | Prognostic clinical scoring systems for dengue fever. Predicted outcomes of the models include any possible clinical endpoints of Dengue Fever such as dengue severity, critical outcomes, probability of intensive care unit outcomes or mortality rates | Scores for purposes other than prognostication e.g. diagnosis etc. Scores that are not specific to dengue fever. Non-clinical scoring systems |
| Control/comparison | Nil | Nil |
| Outcome | Accuracy of prognostic scoring | Nil |
| Study design | Articles in English/translated into English Observational studies (prospective and retrospective cohort). Randomised controlled trials | Articles not written in English/no available English translation Systematic reviews and meta-analyses. Review articles. Case series, case reports |
Table 2 Characteristics of included studies
| Ref. | Period of data collection | Location | Study type | Model | Validation | Sample size |
| Chi et al[38], 2023 | 1 July 2015 to 30 November 2015 | Tainan, Taiwan | Retrospective cross-sectional | Multivariate binary logistic regression with significant coefficient transformed to scores by inverse odds ratio | External validation (separate region and time) | 701 |
| Yang et al[37], 2023 | August 15, 2019 and September 30, 2019 | Dhaka, Bangladesh | Cross-sectional | CART model used on univariate and multivariate logistic regression models | Internal validation via split-sample with random assignment (80% training sample, 20% hold-out sample) | 1090 |
| Gayathri et al[10], 2023 | Model: October 2019; Validation: September 2019 to January 2021 | Chennai, India | Prospective cohort | Binary logistic regression to develop prediction severity model with forward stepwise method in 3 steps to identify 3 significant variables and Nagelkerke square to quantify influence of variables | Temporal validation on 2021 data (n = 312) | 312 |
| McBride et al[11], 2022 | June 2019 to June 2021 | Ho Chi Minh city, Vietnam | Prospective observational cohort | mSOFA score and delta excluding bilirubin calculated from day 0 and 2. Brier score rescaled from 0 to 1 | Internal validation via bootstrap procedure with 500 resamples with replacement | 124 |
| Bhaskar et al[12], 2022 | January 2016 to December 2020 | Manipal, India | Prospective case cohort | Logistic regression model of significant variables | No validation | 303 |
| Srisuphanunt et al[23], 2022 | 2017 to 2019 | Bangkok, Thailand | Retrospective cohort | Potential predictor tested for trend with nonparametric method | Internal validation (method not mentioned) | 302 |
| Sachdev et al[13], 2021 | July 1, 2016 to December 31, 2019 | New Deli, India | Prospective cohort | Multivariate logistic regression model to identify independent risk factors, stepwise entry of new terms into model | No validation | 78 |
| Marois et al[24], 2021 | January 1, 2017 to July 31, 2017 | New Caledonia | Retrospective cohort | Predictive model built using multiple logistic regression and descending stepwise analysis | Internal validation via k-fold cross-validation (k = 10) | 383 |
| Devarbhavi et al[25], 2020 | January 2014 to December 2017 | Bangalore, India | Retrospective cohort | MELD score, arterial pH, lactate used to generate ROC with C-statistics | No validation | 36 |
| Tangnararatchakit et al[26], 2020 | 2004 to 2018 | Bangkok, Thailand | Retrospective cohort | Daily Dengue severity score created in Phase I (n = 191) | Temporal validation on Phase II (n = 51) | 242 |
| Lee et al[27], 2018 | Kaohsiung Chang Gung Memorial Hospital: 2022 to 2015; Kaohsiung Medical University Hospital[2]: 2009 to 2013 | Kaohsiung, Taiwan | Retrospective cohort | Multivariate logistic regression model and assigning points by dividing its regression coefficient by smallest coefficient in model (rounded to nearest whole number) | No validation | 1068 |
| Phakhounthong et al[28], 2018 | October 12, 2009 to October 12, 2010 | Siem Reap, Cambodia | Retrospective cohort | CART tree constructed with J48 algorithm to generate decision tree | Internal validation via 10-fold cross-validation by Weka sed to estimate out-of-sample accuracy (split data into 10, 9 for training, 1 for testing). Multiple rounds of cross-validation performed using different partitions | 198 |
| Park et al[14], 2018 | Queen Sirikit National Institute of Child Health[3]: 1994 to 1997, 1999 to 2002, 2004 to 2007; Kamphaeng Phet Provincial Hospital[4]: 1994 to 1997 | Bangkok, Thailand; Nai Mueang, Thailand | Prospective cohort | SEM using data from n = 257 with complete data | Internal validation via multiple imputation via Markov-chain Monte Carlo method to create 50 imputed datasets without missing data on n = 1244 to assess Sn | 744 |
| Md-Sani et al[29], 2018 | September 8, 2022 to November 18, 2022 | Kuala Lumpur, Malaysia | Retrospective cohort | Variable selection via 5-fold cross-validated Lasso regression used to build logistic regression model | Internal validation via cross-validation | 199 |
| Suwarto et al[30], 2018 | January 2011 to March 2016 | Jarkarta, Indonesia | Retrospective cohort | Dengue Score (Suwarto et al[18], 2016) | External validation | 207 |
| Hsieh et al[15], 2017 | July 1, 2015 to December 31, 2015 | Tainan, Taiwan | Prospective cohort | Univariate and multivariate with binary variables Cox model to identify predictive factors for mortality with cut-off values selected using Youden index | No validation | 625 |
| Huang et al[35], 2017 | September 1, 2015 to December 31, 2015 | Tainan, Taiwan | Case control | Univariate analysis and Multivariate logistic regression analysis to investigate independent predictors for 30-day mortality. Novel prediction score developed by assigning a score of 1 to each independent variable | Internal validation via bootstrapping method by generating 1000 hypothetical study population using random sampling from study sample | 2358 |
| Fernández et al[31], 2017 | 2009 to 2010 | Tegucigalpa and San Pedro Sula, Honduras | Retrospective cohort | Univariable analysis and multivariable logistic regression analysis using forward stepwise selection to construct a predictive model for severe dengue | Internal validation via bootstrap technique (sampling with replacement using 320 individuals sampling 1000 times) | 320 |
| Nguyen et al[16], 2017 | October 1, 2010 to December 31, 2013 | Southern Vietnam | Prospective cohort | Logistic regression to develop prognostic model | Internal validation via "leave-one-site-out cross validation" (develop algorithm on all but 1 study site and validate using that study site) and Temporal validation | 2060 |
| Djossou et al[17], 2016 | March 17, 2013 to September 30, 2013 | Cayenne, French Guiana | Prospective cohort | Final model include variables with significant association in single covariable analysis | Internal validation via bootstrapping 1000 replications | 806 |
| Lee et al[32], 2016 | Kaohsiung Chang Gung Memorial Hospital: July 1, 2002 to May 31, 2015; Kaohsiung Medical University Hospital[6]: 2009 to 2011 | Kaohsiung, Taiwan | Retrospective cohort | Significant variables in univariate analysis entered into multivariate logistic regression and point assignment calculated by dividing regression coefficient by smallest coefficient in model | Temporal validation (model set before 31 Jul 2014 n = 1063, validation set after Aug 1 2014 n = 190) | 1253 |
| Suwarto et al[18], 2016 | March 2010 to August 2015 | Jarkarta, Indonesia | Prospective cohort | Variables entered into multiple regression analysis using backward selection algorithm to estimate coefficient and independent diagnostic predictors and converted into simplified risk score system | Validation published separately[30] | 172 |
| Lam et al[19], 2015 | 2003 to 2009 | Ho Chi Minh City, Vietnam | Prospective cohort | Univariate and multivariate analysis via logistic regression and model simplified using stepwise backwards model selection based on Akaike Information Criterion | Temporal validation (model from n = 939 enrolled before 2009 and validated on 268 enrolled during 2009) and internal validation via repeated 10-fold cross-validation | 1207 |
| Pang et al[36], 2014 | January 1, 2004 to December 31, 2008 | Singapore | Case control | Univariate and multivariate conditional logistic regression performed to assess association | No validation | 135 |
| Pongpan et al[33], 2014 | 2007 to 2010 | Phrae, Thailand; Lamphun, Thailand; Chiang Mai, Thailand | Retrospective cohort | Scoring system (Pongpan et al[34], 2013) | External validation | 400 |
| Pongpan et al[34], 2013 | 2007 to 2010 | Nakorn Sawan, Thailand; Kampaeng Phet, Thailand; Uttaradit, Thailand | Retrospective cohort | Scoring system analysed by multivariable ordinal logistic regression and assigned item scores derived from coefficient transformation | Validation published separately[33] | 777 |
| Leo et al[20], 2013 | January 2010 to September 2012 | Singapore | Prospective cohort | Variables selected from World Health Organization[7] Warning Signs | External validation | 499 |
| Diaz-Quijano et al[21], 2010 | Not reported | Bucaramanga, Colombia | Prospective cohort | Risk score based on independent predictors and risk group formed | No validation | 729 |
| Potts et al[22], 2010 | Queen Sirikit National Institute of Child Health: 1994 to 1997, 1999 to 2002, 2004 to 2007; Kamphaeng Phet Provincial Hospital: 1994 to 1997 | Bangkok, Thailand; Kamphaeng Phet, Thailand | Prospective cohort | CART analysis with age, gender, and clinical laboratory data to establish a diagnostic decision tree | Internal validation via k-fold cross validation method (k = 5) of each tree | 582 |
Table 3 Baseline patient characteristics, n (%)/mean ± SD
| Ref. | Paediatrics only | n | Age | Gender (male) | Ethnicity | Social demographics | Onset | Presentation |
| Chi et al[38], 2023 | No | 701 | 54.1 ± 19.2 | 363 (51.8) | Nil | Nil | Nil | Fever, nausea, vomit, bleeding, fatigue, hyporexia, abdominal pain (data not available) |
| Yang et al[37], 2023 | No | 1090 | < 18 years: 318 (29.2). 18-39 years: 553 (50.7). ≥ 40 years: 219 (20.1) | 652 (59.8) | Nil | Uneducated: 28 (26.1). Primary education: 339 (31.1). Secondary education: 306 (28.1). Tertiary education: 112 (10.3). Missing education data: 49 (4.5). Low income (< 15000 BDT per month): 34 (31.4). Low-mid income (15000-25000 BDT per month): 404 (37.1). High-mid income (25000-50000 BDT per month): 206 (18.9). High income (≥ 50000 BDT per month): 71 (6.5). Missing income data: 67 (6.1). Slum: 384 (35.2). Flat: 540 (49.5). House: 125 (11.5). Missing residence data: 41 (3.8) | Nil | Fever, myalgia, vomit, headache, abdominal pain |
| Gayathri et al[10], 2023 | Yes | 312 | 6.4 ± 3.44 | 196 (62.8) | Nil | Nil | Nil | Fever, bleeding, vomit, fatigue, abdominal pain |
| McBride et al[11], 2022 | No | 124 | 24.5, IQR: 20-32 | 63 (50.8) | Nil | Nil | Median 5 days (range 3-7) | Nil |
| Bhaskar et al[12], 2022 | Yes | 303 | ≤ 6 years: 60 (19.8). > 6 years: 243 (80.2) | 161 (53.1) | Nil | Nil | Nil | Headache, myalgia, abdominal pain, rash, vomit, dyspnoea |
| Srisuphanunt et al[23], 2022 | No | 302 | 24.9 ± 17.3 | 154 (50.1) | Nil | Nil | Nil | Nil |
| Sachdev et al[13], 2021 | Yes | 78 | 10, IQR: 6.2-12 | 49 (62.8) | Nil | Nil | 4.44 ± 2.15 | Nil |
| Marois et al[24], 2021 | No | 383 | 32, IQR: 34 | 174 (45.4) | Melanesian: 141 (36.7). European: 86 (22.5). Polynesian: 68 (17.8). Others: 63 (17.4) | Tobacco: 105 (27.4). Cannabis: 19 (4.9). Kava: 15 (3.9). Alcohol (> 3 units/day): 9 (2.3) | Median 4 days, IQR: 3 | Fever, arthralgia, myalgia, eye pain, headache, diarrhoea, nausea, vomit, rash, third spacing, fatigue, hepatomegaly, abdominal pain |
| Devarbhavi et al[25], 2020 | No | 36 | 32.31 ± 17.04 | 20 (55.6) | Nil | Nil | Range 3 to 7 days | Nil |
| Tangnararatchakit et al[26], 2020 | Yes | 242 | 10.6 ± 3.9 | 137 (56.6) | Nil | Nil | Nil | Nil |
| Lee et al[27], 2018 | No | 1068 | 52, IQR: 18-91 | 513 (47.2) | Nil | Nil | Median 3 days (range 1-10) | Fever, myalgia, arthralgia, eye pain, rash, headache, cough, diarrhoea, vomit, fatigue, abdominal pain |
| Phakhounthong et al[28], 2018 | Yes | 198 | 1 month-< 1 year: 56 (28.2). 1 year < 5 year: 59 (29.8). ≥ 5 years: 83 (41.9) | 107 (54.0) | Nil | Nil | < 2 days | Fever, vomit, bleeding, dyspnoea, hepatomegaly, headache, rash, altered mental state |
| Park et al[14], 2018 | Yes | 744 | Validation set not reported) | Nil | Nil | Nil | < 3 days | Fever |
| Md-Sani et al[29], 2018 | No | 199 | 30.8, IQR: 24.7-41.3 | 127 (63.8) | Nil | Nil | Nil | Fever, vomit, bleeding, fatigue, hepatomegaly, third spacing |
| Suwarto et al[30], 2018 | No | 207 | 33, IQR: 23-46 | 91 (44) | Nil | Nil | Nil | Fever |
| Hsieh et al[15], 2017 | No | 625 | 72.3 ± 9.3 | 46 (61.3) | Nil | Nil | Nil | Nil |
| Huang et al[35], 2017 | No | 2358 | 47.8 ± 21.9 | 1197 (50.8) | Nil | Stay with family: 2296 (97.4). Stay alone: 53 (2.2). Long-term care: 9 (0.4). Tobacco: 47 (2). Alcoholism: 34 (1.4) | Nil | Fever, arthralgia, myalgia, eye pain, headache, nausea, vomit, bleeding, rash, hyporexia, diarrhoea, fatigue, cough, dizzy, altered mental state, dyspnoea, chest pain, abdominal pain |
| Fernández et al[31], 2017 | No | 320 | 22.4 (missing SD) | 181 (56.6) | Nil | Nil | ≥ 6 days | Fever, headache, eye pain, arthralgia, myalgia, rash, vomit, hyporexia |
| Nguyen et al[16], 2017 | Yes | 2060 | Given as 2 cohorts in median IQR | Nil | Nil | Nil | < 3 days | Fever |
| Djossou et al[17], 2016 | No | 806 | < 1 year: 23 (2.9). 1-15 year: 294 (36.5). 16-65 year: 480 (59.6). > 65 years: 15 (1.9) | 408 (50.2) | Nil | Nil | Median 2 days | Myalgia, arthralgia, bleeding, rash, vomit, abdominal pain (data not available) |
| Lee et al[32], 2016 | No | 1253 | Given as 2 cohorts in median IQR | 595 (47.5) | Nil | Nil | Derivation cohort Median 4 days, range 1-15. Validation cohort. Median 4 days, range 1-13 | Nil |
| Suwarto et al[18], 2016 | No | 172 | 22, IQR: 11-33 | 89 (51.7) | Nil | Nil | 3 days | Fever |
| Lam et al[19], 2015 | Yes | 1207 | 10, IQR: 7-12 | 645 (53) | Nil | Nil | Median 5 days (IQR: 5-6) | Fever, bleeding, third spacing, abdominal pain |
| Pang et al[36], 2014 | No | 135 | Given as 2 cohorts in median IQR | 88 (65.2) | Chinese: 98 (72.6). Malay: 7 (5.2). Indian: 17 (12.6). Others: 13 (9.6) | Nil | Cases: 3 days (IQR: 3-5). Control: 5 days (IQR: 4-5) | Nil |
| Pongpan et al[33], 2014 | Yes | 400 | 10.3 ± 3.4 | 223 (55.8) | Nil | Nil | Nil | Vomit, cough, bleeding, hepatomegaly, headache, myalgia, rash, third spacing, abdominal pain |
| Pongpan et al[34], 2013 | Yes | 777 | 9.6 ± 3.3 | 376 (48.4) | Nil | Nil | Nil | Hepatomegaly, headache, myalgia, vomit, cough, rash, third spacing, bleeding, abdominal pain |
| Leo et al[20], 2013 | No | 499 | Given as 2 cohorts in median IQR | 396 (79.4) | Nil | Nil | ED cohort. Median 6 days (5%-95% 3-8). Outpatient cohort. Median 6 days (5%-95% 3-8) | Nil |
| Diaz-Quijano et al[21], 2010 | No | 729 | 25.8 ± 15.9 | Nil | Nil | Nil | Median: 7 days; range: 4-10 | Fever, headache, eye pain, myalgia, arthralgia, hyporexia, cough, rash, vomit, diarrhoea, bleeding, abdo pain |
| Potts et al[22], 2010 | Yes | 582 | 8.7 ± 0.5 | Nil | Nil | Nil | Mean 2.15 days | Fever |
Table 4 Results of prognostic score performance
| Ref. | Model | Score components | Predicted outcomes | Threshold | Sensitivity (%) | Specificity (%) |
| Leo et al[20], 2013 | Number of warning signs | Abdominal pain; Persistent vomiting; Clinical fluid accumulation; Mucosal bleeding; Hepatomegaly (> 2 cm); ↑ in hematocrit; rapid ↓ of platelet | DHF I-IV and severe dengue | Nil | 1 warning sign: DHF I-IV 79%. DHF II-IV 100%. Severe dengue 100%. 2 warning signs: DHF I-IV 33%, DHF II-IV 47%, Severe dengue 46%. 3 warning signs: DHF I-IV 6%, DHF II-IV 9%, Severe dengue 8% | 1 warning sign: DHF I-IV 52%, DHF II-IV 52%, Severe dengue 48%. 2 warning signs: DHF I-IV 88%, DHF II-IV 88%, Severe dengue 85%. 3 warning signs: DHF I-IV 99%, DHF II-IV 99%, Severe dengue 98% |
| Chi et al[38], 2023 | Multivariable binary logistic regression | Clinical presentations; age; chronic comorbidities, such as DM, CKD, chronic heart failure, and neoplasms; and abnormal laboratory finding | Critical outcomes early identification and treatment | 4 | 95.7% | 76.8% |
| Lee et al[27], 2018 | Regression equation | Serum bicarbonate; ALT; age; gender | Mortality | 2 | 94.9% | 85.2% |
| Suwarto et al[30], 2018 | Nomogram | Hct; Serum Albumin; Platelet count; AST ratio | Pleural effusion and/or ascites | ≥ 2 | 92.45 | 74.26 |
| Huang et al[35], 2017 | Nomogram | Elderly age (≥ 65 years); Hypotension (systolic blood pressure < 90 mmHg); hemoptysis; DM; chronic bedridden | Mortality | 1 and 3 | Score ≥ 1: 91.2% | Score ≥ 3: 99.7% |
| Sachdev et al[13], 2021 | Outcome predictor variables | SGPT; S lactate; PRISM 12 (paediatric risk of mortality at 12 hours admission); VIS (vasopressor inotrope score); FB (fluid balance % at 24 hours) | Mortality | S lactate: 2.73 mmol/L, VIS: 22.5 | S lactate: 0.90 | VIS: 0.948 |
| Pang et al[36], 2014 | Prognostic index (equation) | Neutrophil proportion; ALT; serum urea level | ICU requirement | P = −1.4 | 88.2 | 88.9 |
| Nguyen et al[16], 2017 | Nomogram | Vomiting; PLT; n × AST ULN; NS1 +ve | Severe Dengue | Nil | 0.87 | 0.88 |
| Gayathri et al[10], 2023 | Binary logistic regression | Bedside dengue severity score = -1.297 + 4.234 (narrow pulse pressure) + 1.284 (mucosal bleed) + 0.489 (third space fluid loss) | Severe dengue | Nil | 86.75% | 98.25% |
| Tangnararatchakit et al[26], 2020 | Nomogram | Age ≤ 1 year; aspirin or nonsteroidal drug ingestion; underlying disease such as hemolytic anaemia and congenital heart disease; additional vital signs; urine output; bleeding sites; amounts of the required crystalloid; colloid and blood components; inotropic drug administration; respiratory support and invasive procedures | Subsequent threatened shock and profound shock | ≥ 12 | 86.21 | 84.26 |
| Marois et al[24], 2021 | Sex-specific multivariable predictive model | Female model: Age class; Medical history; Hypertension (treated/untreated); Symptoms-Mucosal bleeding, clinical liquid accumulation, skin rash (except purpura); last biological results-Platelets < 30 g/L, ALT > 10 N. Male model: Age class; Risky behaviour; Alcohol abuse > 3 u/day; symptoms mucosal bleeding; last biological results-Platelets < 30 g/L, ALT > 10N | Severe dengue | Nil | Female model: 84.5%. Male model: 84.5% | Female model: 78.6%. Male model: 95.5% |
| Bhaskar et al[12], 2022 | Multivariable binary regression model | PCV; Platelet count; ALT; Highest WBC; Hypotension | Complicated dengue in paediatric patients | 2 | 84.1 | 72.5 |
| Suwarto et al[18], 2016 | Nomogram | Hct; Serum Albumin; Platelet count; AST ratio | Pleural effusion/or ascites | ≥ 2 | 82.47 | 70.42 |
| Devarbhavi et al[25], 2020 | MELD score | Admission lactate | Mortality | Nil | 81% | 74% |
| Park et al[14], 2018 | Structural equation modelling | Any dengue illness; AST, WBC; %lymphocytes; PLT; tourniquet test at fever day -3 and -1 | DF, DHF vs DSS | 0.587 | 80.4 | 80.4 |
| Fernández et al[31], 2017 | Univariable and multivariable logistic regression | Headache; petechiae; ascites; platelets < 50000 platelets/mm3 at baseline | Plasma leakage | 7% | 76.4 | 70.3 |
| Lee et al[32], 2016 | Multivariable model based on disease duration | Model 1 age (≥ 65 years vs < 65 years); minor gastrointestinal bleeding (present vs absent); leukocytosis WBC > 10 × 109 cells/L (present vs absent); Platelet count ≥ 100 × 109 cells/L (present vs absent) | Severe dengue | 1 | 70.3% | 90.6% |
| Phakhounthong et al[28], 2018 | CART (classification and regression tree) | HCT; GCS; urine protein; Cr; PLT | Severe dengue | 0.5 | 0.605 | 0.65 |
| Djossou et al[17], 2016 | Logistic regression model | Hematocrit increase; protein concentration; sodium concentration; lymphocyte count; age; aches; extensive purpura; Rash; serous effusion; bleeding | Shock | Nil | 48.2 | 94.2 |
| Yang et al[37], 2023 | CART and random forest model | Age; dyspnoea; plasma leakage; lowest platelet | Severe dengue | Nil | Nil | Nil |
| McBride et al[11], 2022 | Nomogram | SpO2/FiO2; platelet count; Bilirubin level; MAP/PP; Adrenergic agents; GCS score; Creatinine and urine output | Duration of ICU admission Requirement for organ support (mechanical ventilation, vasopressors, renal replacement therapy). Duration of intravenous fluid therapy. Death | Nil | Nil | Nil |
| Srisuphanunt et al[23], 2022 | Nomogram | Albumin; AST; ALT; PLT; PTT; DENV IgM | Severe dengue | Nil | Nil | Nil |
| Md-Sani et al[29], 2018 | Regression equation | Serum bicarbonate; ALT; age; gender | Mortality | Nil | Nil | Nil |
| Hsieh et al[15], 2017 | Multivariate Cox model | APTT; SOFA; APACHE II scores | Mortality | Nil | Nil | Nil |
| Lam et al[19], 2015 | Nomogram | Age; day of illness; pulse rate; temperature; hematocrit; hemodynamic index | Profound DSS, Recurrent shock | Nil | Nil | Nil |
| Pongpan et al[33], 2014 | Nomogram | Age; Hepatomegaly; SBP; WBC; PLT | DF, DHF vs DSS | Nil | Nil | Nil |
| Pongpan et al[34], 2013 | Nomogram | Age; Hepatomegaly; HCT; SBP; WBC; PLT | DF, DHF vs DSS | Nil | Nil | Nil |
| Diaz-Quijano et al[21], 2010 | Binomial regression | Age between 12 and 45 years, rash; vomiting; temperature > 38 °C; leukocyte count < 4500/L; platelet count < 90.000/L | Bleeding | Nil | Nil | Nil |
| Potts et al[22], 2010 | CART | (1) WBC; %monocytes; PLT; HCT; and (2) WBC; AST; %neutrophil; PLT; Age | Severe Dengue (DSS vs DHF Grade 3/4, or PEI > 15) | Nil | Nil | Nil |
- Citation: Thangaraja K, Heng JYJ, Basker G, Chong ST, See KC. Clinical prognostic scores for dengue fever: A systematic review. World J Meta-Anal 2025; 13(4): 112603
- URL: https://www.wjgnet.com/2308-3840/full/v13/i4/112603.htm
- DOI: https://dx.doi.org/10.13105/wjma.v13.i4.112603
