Published online Oct 6, 2019. doi: 10.12998/wjcc.v7.i19.2976
Peer-review started: May 8, 2019
First decision: August 1, 2019
Revised: August 27, 2019
Accepted: September 13, 2019
Article in press: September 13, 2019
Published online: October 6, 2019
Processing time: 159 Days and 1.6 Hours
De-afferentation or non-weight bearing induces rapid cortical and spinal α-motor neuron excitability. The author supposed that an end-effector type gait robot (EEGR) could provide patients with a training condition that was specific enough to activate rapid cortical/spinal neuroplasticity, leading to immediate muscle strengthening.
The author aimed to compare the electromyographic activities of the thigh and shank muscles and isometric peak torque (PT) before and after walking training on a floor or in the end-effector gait robot.
Twelve outpatients without ambulatory dysfunction were recruited. Order of two interventions were randomly chosen. Isometric PT, maximal ratio of torque development, amplitude of compound motor action potential (CMAP), and area under the curve (AUC) were evaluated before and 10 min after both interventions.
The degree of PT improvement of the dominant knee flexors was larger in the EEGR than on the floor. The EEGR-trained patients had greater PT improvement of the dominant knee extensors than those who trained on the floor. However, all electromyographic activities of the thigh and shank muscles (peak CMAP, mean and peak AUC) were significantly lower for the use of the EEGR than walking on the floor.
Immediate strengthening of the knee flexors and extensors was induced after the 5-min EEGR training, despite reduced muscular use.