Clinical and Translational Research
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Clin Cases. Mar 26, 2024; 12(9): 1622-1633
Published online Mar 26, 2024. doi: 10.12998/wjcc.v12.i9.1622
Exploring the autophagy-related pathogenesis of active ulcerative colitis
Zhuo-Zhi Gong, Teng Li, He Yan, Min-Hao Xu, Yue Lian, Yi-Xuan Yang, Wei Wei, Tao Liu
Zhuo-Zhi Gong, Teng Li, He Yan, Yue Lian, Wei Wei, Tao Liu, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
Min-Hao Xu, College of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Beijing 100102, China
Yi-Xuan Yang, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
Author contributions: Gong ZZ and Li T designed and supervised this study, wrote the manuscript; Yan H collated the data; Xu MH and Lian Y analyzed the data; Wei W and Liu T supervised this study and guided the revision of the article; all authors approved the final version of the article.
Institutional review board statement: The data of this study are publicly available on the GEO database, Human Autophagy database.
Conflict-of-interest statement: The authors declare no competing interests.
Data sharing statement: The data of this study are publicly available on the GEO database, Human Autophagy database.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Tao Liu, PhD, Associate Professor, Chief Doctor, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 100102, China. ltlyf2@163.com
Received: January 7, 2024
Peer-review started: January 7, 2024
First decision: January 16, 2024
Revised: January 23, 2024
Accepted: February 27, 2024
Article in press: February 27, 2024
Published online: March 26, 2024
Processing time: 78 Days and 1 Hours
ARTICLE HIGHLIGHTS
Research background

The etiology of ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), remains poorly understood. The pathogenesis of UC is complex and is influenced by genetic, environmental, and immune-related factors. While some recent progress has been made in the development of effective UC treatments, few patients experience complete relief of their symptoms. Thus, finding new therapeutic avenues to improve UC patient quality of life remains an urgent need. Autophagy is a cellular self-degradation and repair process that can help remove harmful proteins and organelles from cells and maintain intracellular homeostasis. Recent studies suggest that autophagy may play a key role in the pathogenesis and progression of IBD.

Research motivation

The motivation of this study was to provide an in-depth investigation of the autophagy-related pathogenesis of active phase UC. Bioinformatics analysis was used to better understand whether autophagy plays a key role in active UC and which autophagy-related genes may contribute to the disease process.

Research objectives

This study sought to provide new ideas and potential therapeutic targets for the treatment of active UC to better understand the pathogenesis of the disease and improve clinical symptoms.

Research methods

A bioinformatics approach was used to compare gene expression data between patients with active UC and healthy controls to identify core genes associated with autophagy and to obtain more information about the role of autophagy in this disease.

Research results

HSPA5, CASP1, SERPINA1, CX3CL1, and BAG3 were identified as core targets associated with autophagy-related pathogenesis in active UC, all of which were upregulated. Key signaling pathways linked to these targets include autophagy in animals, other autophagy pathways, and lipids and atherosclerosis pathways. DisGeNET enrichment analysis showed that middle cerebral artery occlusion, glomerulonephritis, and active UC were interrelated risk factors associated with autophagy. Active UC patients had significantly higher counts of activated memory CD4 T cells, follicular helper T cells, gamma delta T cells, M0 macrophages, M1 macrophages, activated dendritic cells, mast cells, and neutrophils than healthy controls.

Research conclusions

HSPA5, CASP1, SERPINA1, CX3CL1, and BAG3 were identified as core autophagy-related targets in active UC patients, all of which were upregulated. These targets are associated with key signaling pathways, including autophagy in animals, other autophagy pathways, and lipid and atherosclerosis pathways. DisGeNET enrichment analysis revealed a significant connection between middle cerebral artery occlusion, glomerulonephritis, and the autophagy-related pathogenesis of active UC. In addition, active UC patients had significantly elevated counts of various immune cells, indicating that immune function is dysregulated. These findings provide valuable insight into the role of autophagy in UC pathogenesis and could be used to inform the development of targeted therapeutic interventions.

Research perspectives

Future research in this field should focus on better understanding the molecular mechanisms by which HSPA5, CASP1, SERPINA1, CX3CL1, and BAG3 contribute to autophagy in patients with active UC. Investigating the specific roles of these core targets in UC pathogenesis and their interactions with the identified key signaling molecules should be a priority. Interventions that target the core autophagy-related genes and pathways could offer promising treatment options for active UC patients. It is also important to further explore the immune dysregulation observed in UC patients, particularly the elevated immune cell counts, to understand better the inflammatory processes involved and inform the development of immunomodulatory strategies to manage UC.