Published online Feb 16, 2025. doi: 10.12998/wjcc.v13.i5.101306
Revised: October 9, 2024
Accepted: November 5, 2024
Published online: February 16, 2025
Processing time: 69 Days and 18.6 Hours
Diabetic retinopathy (DR) remains a leading cause of vision impairment and blindness among individuals with diabetes, necessitating innovative approaches to screening and management. This editorial explores the transformative potential of artificial intelligence (AI) and machine learning (ML) in revolutionizing DR care. AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy, efficiency, and accessibility of DR screening, helping to overcome barriers to early detection. These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision, enabling clinicians to make more informed decisions. Furthermore, AI-driven solutions hold promise in personalizing management strategies for DR, incorpo
Core Tip: Leveraging artificial intelligence (AI) and machine learning in diabetic retinopathy care can significantly enhance early detection and personalized treatment. Clinicians should embrace AI-driven screening tools that analyze retinal images with high precision, reducing the risk of human error and improving diagnostic accuracy. Implementing predictive analytics can help in identifying patients at higher risk, allowing for timely interventions and tailored treatment plans. To maximize the benefits, healthcare systems must invest in training and integrating these technologies seamlessly into clinical workflows. Collaborations between technologists and healthcare providers are crucial for developing robust, ethical, and equitable AI solutions in ophthalmic care.
