Published online Jan 26, 2024. doi: 10.12998/wjcc.v12.i3.525
Peer-review started: November 7, 2023
First decision: December 15, 2023
Revised: December 18, 2023
Accepted: January 3, 2024
Article in press: January 3, 2024
Published online: January 26, 2024
Processing time: 71 Days and 23.4 Hours
Type 2 diabetes mellitus (T2DM) is a metabolic disease of impaired glucose uti
To explore miRNA roles in T2DM's metabolic pathways for potential therapeutic and diagnostic advancements in diabetes complications.
We systematically searched the electronic database PubMed using keywords. We included free, full-length research articles that evaluate the role of miRNAs in T2DM and its complications, focusing on genetic and molecular disease mecha
Several types of miRNAs are linked in metabolic pathways which are affected by AGE/RAGE axis in T2DM and its complications. miR-96-5p, miR-7-5p, miR-132, has_circ_0071106, miR-143, miR-21, miR-145-5p, and more are associated with va
Targeting the AGE/RAGE axis, with a focus on miRNA regulation, holds promise for managing T2DM and its complications. MiRNAs have therapeutic potential as they can influence the metabolic pathways affected by AGEs and RAGE, poten
Core Tip: Type 2 diabetes mellitus (T2DM) is a worldwide problem characterized by uncontrolled hyperglycemia. In T2DM, elevated glucose bound proteins and leading to formation advanced glycation end products. miRNAs play a major role in gene regulation of different proteins which are involved in various metabolic pathways including nuclear factor kappa beta, protein kinase C, and phosphoinositide-3-kinase–protein kinase B/Akt which are responsible for blood glucose and insulin secretion and T2DM. The target of these miRNA changes the regulation of metabolic pathways which can reduce oxidative stress and inflammation. So, the modulate the regulation of these miRNA could be possible approach of the treatment of T2DM.
