Published online Jan 16, 2024. doi: 10.12998/wjcc.v12.i2.302
Peer-review started: October 20, 2023
First decision: November 28, 2023
Revised: December 15, 2023
Accepted: December 21, 2023
Article in press: December 21, 2023
Published online: January 16, 2024
Processing time: 82 Days and 20.8 Hours
Akt plays diverse roles in humans. It is involved in the pathogenesis of type 2 diabetes mellitus (T2DM), which is caused by insulin resistance. Akt also plays a vital role in human platelet activation. Furthermore, the hippocampus is closely associated with memory and learning, and a decrease in hippocampal volume is reportedly associated with an insulin-resistant phenotype in T2DM patients without dementia.
To investigate the relationship between Akt phosphorylation in unstimulated platelets and the hippocampal volume in T2DM patients.
Platelet-rich plasma (PRP) was prepared from the venous blood of patients with T2DM or age-matched controls. The pellet lysate of the centrifuged PRP was subjected to western blotting to analyse the phosphorylation of Akt, p38 mitogen-activated protein (MAP) kinase and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Phosphorylation levels were quantified by densitometric analysis. Hippocampal volume was analysed using a voxel-based specific regional analysis system for Alzheimer’s disease on magnetic resonance imaging, which proposes the Z-score as a parameter that reflects hippocampal volume.
The levels of phosphorylated Akt corrected with phosphorylated p38 MAP kinase were inversely correlated with the Z-scores in the T2DM subjects, whereas the levels of phosphorylated Akt corrected with GAPDH were not. However, this relationship was not observed in the control patients.
These results suggest that an inverse relationship may exist between platelet Akt activation and hippocampal atrophy in T2DM patients. Our findings provide insight into the molecular mechanisms underlying T2DM hippocampal atrophy.
Core Tip: Type 2 diabetes mellitus (T2DM) is caused by insulin resistance, and Akt is involved in this process. Akt also plays an important role in human platelet activation. The hippocampus, associated with memory and learning, can decrease in volume in patients with an insulin-resistant phenotype. We investigated the relationship between Akt phosphorylation in unstimulated platelets and hippocampal volume-reflecting Z-score in T2DM patients. The levels of phosphorylated Akt corrected for phosphorylated p38 mitogen-activated protein kinase were inversely correlated with Z-scores in T2DM patients. These results suggest an inverse relationship between Akt activation in platelets and hippocampal atrophy in patients with T2DM.