Case Report
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Clin Cases. May 16, 2024; 12(14): 2445-2450
Published online May 16, 2024. doi: 10.12998/wjcc.v12.i14.2445
Detection of LAMA2 c.715C>G:p.R239G mutation in a newborn with raised creatine kinase: A case report
Jing Yuan, Xiang-Ming Yan
Jing Yuan, Department of Pediatric, Children’s Hospital of Soochow University, Suzhou 215025, Jiangsu Province, China
Xiang-Ming Yan, Department of Surgery, Children's Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
Author contributions: Yuan J analyzed the data and wrote the paper; Yan XM checked and audited the paper.
Supported by The Suzhou Science and Technology Development Plan Guiding Project, No. SZSYYXH-2023-YB5; The Suzhou Science and Technology Development Plan Project, No. SKY2023002; and The Suzhou Key Laboratory of Children's Structural Deformities, No. SZS2022018.
Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Xiang-Ming Yan, MD, Chief Doctor, Department of Surgery, Children's Hospital of Soochow University, No. 92 Zhong Nan Street, Industrial Park, Suzhou 215000, Jiangsu Province, China. yxmsz2003@163.com
Received: February 7, 2024
Peer-review started: February 7, 2024
First decision: March 2, 2024
Revised: March 8, 2024
Accepted: March 28, 2024
Article in press: March 28, 2024
Published online: May 16, 2024
Processing time: 88 Days and 5.1 Hours
Abstract
BACKGROUND

We report a rare case of primary clinical presentation featuring elevated creatine kinase (CK) levels in a neonate, which is associated with the LAMA2 gene. In this case, a heterozygous mutation in exon5 of the LAMA2 gene, c.715C>G (resulting in a change of nucleotide number 715 in the coding region from cytosine to guanine), induced an amino acid alteration p.R239G (No. 239) in the patient, representing a missense mutation. This observation may be elucidated by the neonatal creatine monitoring mechanism, a phenomenon not previously reported.

CASE SUMMARY

We analysed the case of a neonate presenting solely with elevated CK levels who was eventually discharged after supportive treatment. The chief complaint was identification of increased CK levels for 15 d and higher CK values for 1 d. Admission occurred at 18 d of age, and despite prolonged treatment with creatine and vitamin C, the elevated CK levels showed limited improvement. Whole exome sequencing revealed the presence of a c.715C>G mutation in LAMA2 in the newborn, correlating with a clinical phenotype. However, the available information offers insufficient evidence for clinical pathogenicity.

CONCLUSION

Mutations in LAMA2 are associated with the clinical phenotype of increased neonatal CK levels, for which no specific treatment exists. Whole genome sequencing facilitates early diagnosis.

Keywords: Creatine kinase; LAMA2; Gene mutation; Neonate; Case report

Core Tip: We analyzed the case of a neonate who appeared with only elevated creatine kinase (CK) and eventually was discharged after supportive treatment. The age of admission was 18 d, and the increased CK did not improve significantly after prolonged treatment with creatine and vitamin C. Whole exome sequencing identified the mutation of c.715C>G on LAMA2 in the newborn, which is associated with clinical phenotype.