Published online Apr 26, 2024. doi: 10.12998/wjcc.v12.i12.2023
Peer-review started: February 23, 2024
First decision: March 9, 2024
Revised: March 9, 2024
Accepted: March 22, 2024
Article in press: March 22, 2024
Published online: April 26, 2024
Processing time: 52 Days and 11.9 Hours
In this editorial, we comment on the article by Wang and Long, published in a recent issue of the World Journal of Clinical Cases. The article addresses the challenge of predicting intensive care unit-acquired weakness (ICUAW), a neuromuscular disorder affecting critically ill patients, by employing a novel processing strategy based on repeated machine learning. The editorial presents a dataset comprising clinical, demographic, and laboratory variables from intensive care unit (ICU) patients and employs a multilayer perceptron neural network model to predict ICUAW. The authors also performed a feature importance analysis to identify the most relevant risk factors for ICUAW. This editorial contributes to the growing body of literature on predictive modeling in critical care, offering insights into the potential of machine learning approaches to improve patient outcomes and guide clinical decision-making in the ICU setting.
Core Tip: Predicting intensive care unit-acquired weakness (ICUAW) is crucial for improving patient outcomes. This editorial presents the potential of machine learning, specifically the multilayer perceptron neural network model, in predicting ICUAW. Insights into ICUAW risk factors and guides clinical decision-making in critical care are offered. The importance of developing accurate and reliable predictive models to improve patient outcomes in the intensive care unit setting is also emphasized.
