Song Y, Zhang HJ, Song X, Geng J, Li HY, Zhang LZ, Yang B, Lu XC. Gene signatures to therapeutics: Assessing the potential of ivermectin against t(4;14) multiple myeloma. World J Clin Oncol 2024; 15(1): 115-129 [PMID: 38292661 DOI: 10.5306/wjco.v15.i1.115]
Corresponding Author of This Article
Xue-Chun Lu, PhD, Chief Doctor, Professor, Research Scientist, Department of Hematology, The Second Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China. luxuechun@301hospital.com.cn
Research Domain of This Article
Oncology
Article-Type of This Article
Clinical and Translational Research
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Baishideng Publishing Group Inc, 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
Share the Article
Song Y, Zhang HJ, Song X, Geng J, Li HY, Zhang LZ, Yang B, Lu XC. Gene signatures to therapeutics: Assessing the potential of ivermectin against t(4;14) multiple myeloma. World J Clin Oncol 2024; 15(1): 115-129 [PMID: 38292661 DOI: 10.5306/wjco.v15.i1.115]
World J Clin Oncol. Jan 24, 2024; 15(1): 115-129 Published online Jan 24, 2024. doi: 10.5306/wjco.v15.i1.115
Gene signatures to therapeutics: Assessing the potential of ivermectin against t(4;14) multiple myeloma
Yang Song, Hao-Jun Zhang, Xia Song, Jie Geng, Hong-Yi Li, Li-Zhong Zhang, Bo Yang, Xue-Chun Lu
Yang Song, Hong-Yi Li, School of Basic Medicine, Medical School of Chinese PLA, Beijing 100853, China
Hao-Jun Zhang, Xia Song, Jie Geng, Li-Zhong Zhang, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
Bo Yang, Xue-Chun Lu, Department of Hematology, The Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
Author contributions: Song Y and Lu XC conceived and designed the experiments. Zhang HJ, Geng J, and Song Y conducted the experiments and drafted the manuscript; Zhong LZ and Song X contributed to the techniques used and commented on the manuscript; Li HY performed the data analysis; Yang B and Lu XC assisted with revising the manuscript; All the authors reviewed the results and approved the final version of the manuscript.
Supported bythe National Key Research and Development Program of China, No. 2021YFC2701704; the National Clinical Medical Research Center for Geriatric Diseases, "Multicenter RCT" Research Project, No. NCRCG-PLAGH-20230010; and the Military Logistics Independent Research Project, No. 2022HQZZ06.
Institutional review board statement: This study does not involve research on humans/animals and does not include the initial version formally approved by the Institutional Review Board in the official language of the authors' country.
Informed consent statement: This study does not involve clinical research and does not include the initial version of the informed consent form signed by all subjects and investigators.
Conflict-of-interest statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Xue-Chun Lu, PhD, Chief Doctor, Professor, Research Scientist, Department of Hematology, The Second Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China. luxuechun@301hospital.com.cn
Received: November 20, 2023 Peer-review started: November 20, 2023 First decision: December 5, 2023 Revised: December 13, 2023 Accepted: January 2, 2024 Article in press: January 2, 2024 Published online: January 24, 2024 Processing time: 64 Days and 2 Hours
ARTICLE HIGHLIGHTS
Research background
Multiple myeloma (MM) is a terminally differentiated B-cell tumor disease with a challenging prognosis. Specifically, the t(4;14) MM is categorized as a high-risk subtype within MM.
Research motivation
The t(4;14) MM tends to relapse, and currently, there is a lack of effective clinical treatment strategies.
Research objectives
This study aimed to elucidate the molecular basis of the t(4;14) MM and search for potential effective drugs through a comprehensive approach.
Research methods
The transcriptional characteristics of t(4;14) multiple myeloma were obtained from the Gene Expression Omnibus and subjected to gene ontology and pathway enrichment analysis. Utilizing the STRING database and Cytoscape, a protein-protein interaction network was constructed, and core targets were identified. Connectivity Map identified potential small-molecule drugs, and these findings were validated through molecular docking analysis. One of these drugs, ivermectin, was further tested for its effects on t(4;14) multiple myeloma cells.
Research results
We identified 258 differentially expressed genes with enriched functions in cancer pathways, cytokine receptor interactions, the nuclear factor (NF)-kappa B signaling pathway. Ten key genes were pinpointed. Ivermectin emerged as a potential treatment. In vitro, ivermectin inhibited t(4;14) MM cell growth via the NF-kappa B pathway and induced t(4;14) MM cell apoptosis.
Research conclusions
Ivermectin induced apoptosis in t(4;14) MM cells via the NF-κB signaling pathway.
Research perspectives
Our study offers valuable molecular insights for biomarker validation and potential drug development in t(4;14) MM diagnosis and treatment.