Published online Nov 24, 2022. doi: 10.5306/wjco.v13.i11.929
Peer-review started: October 19, 2022
First decision: October 28, 2022
Revised: October 30, 2022
Accepted: November 6, 2022
Article in press: November 6, 2022
Published online: November 24, 2022
Processing time: 32 Days and 18.3 Hours
Survival for metastatic melanoma has significantly improved since the introduction of immune checkpoint blockade (ICB) therapy. However, despite their considerable efficacy, 40%-60% of melanoma patients do not experience objective responses to the therapy. Additionally, some patients experience ICB-related colitis as a consequence of ICB therapy, preventing them from deriving the full benefit of ICB therapy. Recent studies have demonstrated that the gut microbiome (GM) may affect tumor immunity by regulating the host immune system and tumor micro-environment, thus suggesting that GM may affect response to ICB therapy and susceptibility of ICB-related colitis.
The GM has shown great potential as a biomarker of response to ICB therapy in melanoma patients. Previous studies investigating GM composition and/or diversity in patients with melanoma have identified distinct GM composition and diversity in responders to ICB compared to non-responders, as well as those more susceptible to ICB-related colitis than those who are not.
To be the first to compile the existing data regarding the role of GM composition and diversity in predicting response to ICB and ICB-related colitis specifically in patients with melanoma.
Comprehensive literature search was done in various platforms using the following search terms: (fecal OR gut) AND (microbiota OR microbiome) AND (melanoma) AND (immunotherapy OR checkpoint OR nivolumab OR ipilimumab OR pembrolizumab). From a total of 300 studies, nine studies met inclusion criteria. Two studies were phase I clinical trials, while the remainder were prospective observational studies. All but one study has moderate risk of bias. Data from these studies including but not limited to, number of participants, type of immunotherapy received, GM analysis method, and GM composition and diversity were collected and interpreted.
Fecal samples enriched in Firmicutes phylum were associated with good response to ICB therapy, however they were associated with increased susceptibility to ICB-related colitis. Fecal samples enriched in Bacteroidales family were associated with poor response to ICB. Samples with greater GM diversity were associated with more favorable response to ICB. Fecal samples enriched in Bacteroidetes were associated with decreased incidence of ICB-related colitis. Overall, there was limited concordance in the organisms in the GM identified to be associated with response to ICB, and studies evaluating GM diversity showed conflicting results.
GM composition and diversity holds some potential as a biomarker of response and toxicity to ICB in melanoma. Further prospective studies, including several RCTs that are underway, are needed to confirm whether the GM could be used as a biomarker and potential intervention to modulate ICB response in melanoma patients.
With other promising biomarkers, GM composition and diversity holds potential to be integrated into a multiparameter model to accurately predict which subset of melanoma patients are likely to respond to ICB.