Published online Feb 10, 2016. doi: 10.5306/wjco.v7.i1.106
Peer-review started: May 31, 2015
First decision: August 4, 2015
Revised: October 20, 2015
Accepted: November 23, 2015
Article in press: November 25, 2015
Published online: February 10, 2016
Processing time: 246 Days and 13.6 Hours
Platinum (Pt)-based antitumor agents are effective in the treatment of many solid malignancies. However, their efficacy is limited by toxicity and drug resistance. Reduced intracellular Pt accumulation has been consistently shown to correlate with resistance in tumors. Proteins involved in copper homeostasis have been identified as Pt transporters. In particular, copper transporter receptor 1 (CTR1), the major copper influx transporter, has been shown to play a significant role in Pt resistance. Clinical studies demonstrated that expression of CTR1 correlated with intratumoral Pt concentration and outcomes following Pt-based therapy. Other CTRs such as CTR2, ATP7A and ATP7B, may also play a role in Pt resistance. Recent clinical studies attempting to modulate CTR1 to overcome Pt resistance may provide novel strategies. This review discusses the role of CTR1 as a potential predictive biomarker of Pt sensitivity and a therapeutic target for overcoming Pt resistance.
Core tip: Platinum (Pt)-based chemotherapy is the backbone of treatment for various solid malignancies in both curative and palliative settings. However, the efficacy of Pt is limited by toxicity and inevitable resistance. Hence, it is important to understand the mechanisms of Pt resistance to not only identify treatment non-responders, but more importantly to help develop strategies to overcome resistance and improve efficacy. We herein discuss our current understanding of the mechanisms of Pt resistance, with a particular emphasis on the role of copper transporter receptor 1 in Pt resistance.