Published online Dec 10, 2015. doi: 10.5306/wjco.v6.i6.299
Peer-review started: May 31, 2015
First decision: August 11, 2015
Revised: September 8, 2015
Accepted: October 23, 2015
Article in press: October 27, 2015
Published online: December 10, 2015
Processing time: 194 Days and 21.6 Hours
AIM: To investigate the mechanism of action of lipophilic antidepressant fluoxetine (FLX) in representative molecular subtypes of breast cancer.
METHODS: The anti-proliferative effects and mechanistic action of FLX in triple-negative (SUM149PT) and luminal (T47D and Au565) cancer cells and non-transformed MCF10A were investigated. Reverse phase protein microarray (RPPM) was performed with and without 10 μmol/L FLX for 24 and 48 h to determine which proteins are significantly changed. Viability and cell cycle analysis were also performed to determine drug effects on cell growth. Western blotting was used to confirm the change in protein expression examined by RPPM or pursue other signaling proteins.
RESULTS: The FLX-induced cell growth inhibition in all cell lines was concentration- and time-dependent but less pronounced in early passage MCF10A. In comparison to the other lines, cell growth reduction in SUM149PT coincided with significant induction of endoplasmic reticulum (ER) stress and autophagy after 24 and 48 h of 10 μmol/L FLX, resulting in decreased translation of proteins along the receptor tyrosine kinase/Akt/mammalian target of rapamycin pathways. The increase in autophagy marker, cleaved microtubule-associated protein 1 light chain 3, in SUM149PT after 24 h of FLX was likely due to increased metabolic demands of rapidly dividing cells and ER stress. Consequently, the unfolded protein response mediated by double-stranded RNA-dependent protein kinase-like ER kinase resulted in inhibition of protein synthesis, growth arrest at the G1 phase, autophagy, and caspase-7-mediated cell death.
CONCLUSION: Our study suggests a new role for FLX as an inducer of ER stress and autophagy, resulting in death of aggressive triple negative breast cancer SUM149PT.
Core tip: Our study demonstrates for the first time the complex but selective actions of Food and Drug Administration-approved, well-tolerated antidepressant drug known as fluoxetine (FLX) in malignant triple negative breast cancer (TNBC) cells. The significant reduction in cell growth of inflammatory TNBC line SUM149PT was a consequence of unfolded protein response induced by FLX and subsequent induction of autophagy and mitochondrial apoptosis, demonstrating the intricate crosstalk between endoplasmic reticulum and mitochondria in response to cellular stress. Combination of low dose FLX with existing regimen for TNBC may provide dual benefit of alleviating psychological distress, including depression and anxiety, and inducing death in aggressive tumor cells.