Published online Dec 10, 2015. doi: 10.5306/wjco.v6.i6.252
Peer-review started: May 9, 2014
First decision: July 11, 2014
Revised: September 3, 2015
Accepted: October 1, 2015
Article in press: October 8, 2015
Published online: December 10, 2015
Processing time: 580 Days and 8.5 Hours
Breast cancer is an intrinsically heterogeneous disease. In the world about 1 million cases of breast cancer are diagnosed annually and more than 170000 are triple-negative. Characteristic feature of triple negative breast cancer (TNBC) is that it lacks expression of oestrogen, progesterone and human epidermal growth factor receptor-2/neu receptors. They comprise 15%-20% of all breast cancers. We did a systematic review of PubMed and conference databases to identify studies published on biomarkers in TNBC. We included studies with biomarkers including: Epidermal growth factor receptor, vascular endothelial growth factor, c-Myc, C-kit and basal cytokeratins, Poly(ADP-ribose) polymerase-1, p53, tyrosinase kinases, m-TOR, heat and shock proteins and TOP-2A in TNBC. We also looked for studies published on synthetic lethality and inhibition of angiogenesis, growth, and survival pathways. TNBC is a complex disease subtype with many subclasses. Majority TNBC have a basal-like molecular phenotype by gene expression profiling. Their clinical and pathologic features overlap with hereditary BRCA1 related breast cancers. Management of these tumours is a challenge to the clinician because of its aggressive behaviour, poor outcome, and absence of targeted therapies. As the complexity of this disease is being simplified over time new targets are also being discovered for the treatment of this disease. There are many biomarkers in TNBC being used in clinical practice. Biomarkers may be useful as prognostic or predictive indicators as well as suggest possible targets for novel therapies. Many targeted agents are being studied for treatment of TNBC.
Core tip: Triple negative breast cancer (TNBC) are type of breast cancer which lack of estrogen receptors, progesterone receptors and human epidermal growth factor receptor. It is a complex disease subtype with many subclasses. There are many biomarkers in TNBC used for its sub-classification. Clinically-practical assay/biomarkers that can reliably identify TNBC are necessary. Biomarkers may be useful as prognostic or predictive indicators as well as suggest possible targets for novel therapies.