Editorial
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Clin Oncol. Mar 24, 2024; 15(3): 375-377
Published online Mar 24, 2024. doi: 10.5306/wjco.v15.i3.375
Role of targeting ferroptosis as a component of combination therapy in combating drug resistance in colorectal cancer
Xiao-Ting Xie, Qiang-Hu Pang, Lian-Xiang Luo
Xiao-Ting Xie, Qiang-Hu Pang, The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
Lian-Xiang Luo, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
Author contributions: Xie XT, Pang QH, and Luo LX wrote the editorial; Luo LX conceived and designed the editorial, reviewed the paper, and provided comments; all authors read and approved the final manuscript.
Conflict-of-interest statement: All authors declare no conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Lian-Xiang Luo, PhD, Associate Professor, The Marine Biomedical Research Institute, Guangdong Medical University, No. 2 Wenming East Road, Xiashan District, Zhanjiang 524023, Guangdong Province, China. lulianxiang321@gdmu.edu.cn
Received: December 8, 2023
Peer-review started: December 8, 2023
First decision: December 18, 2023
Revised: December 27, 2023
Accepted: February 25, 2024
Article in press: February 25, 2024
Published online: March 24, 2024
Processing time: 104 Days and 22.2 Hours
Abstract

Colorectal cancer (CRC) is a form of cancer that is often resistant to chemotherapy, targeted therapy, radiotherapy, and immunotherapy due to its genomic instability and inflammatory tumor microenvironment. Ferroptosis, a type of non-apoptotic cell death, is characterized by the accumulation of iron and the oxidation of lipids. Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells. Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance. Moreover, the gut, responsible for regulating iron absorption and release, could influence CRC susceptibility through iron metabolism modulation. Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management, potentially revolutionizing treatment approaches for therapy-resistant cancers.

Keywords: Colorectal cancer; Ferroptosis; Immunotherapy; Drug resistance; Chemotherapy; Nanodrug delivery systems

Core Tip: Drug resistance poses a challenge to the treatment of colorectal cancer (CRC). In this paper, we offer novel perspectives on tackling this issue by focusing on ferroptosis in CRC cells. This approach holds promise in overcoming tumor cell resistance caused by CRC genome instability and changes in the tumor microenvironment, thereby providing innovative therapeutic strategies to break through the clinical drug resistance in CRC.