Published online Sep 28, 2016. doi: 10.4329/wjr.v8.i9.764
Peer-review started: January 14, 2016
First decision: February 29, 2016
Revised: July 25, 2016
Accepted: August 6, 2016
Article in press: August 8, 2016
Published online: September 28, 2016
Processing time: 273 Days and 5.1 Hours
It was estimated that every year more than 30000 persons in the United States - approximately 80 people per day - are diagnosed with type 1 diabetes (T1D). T1D is caused by autoimmune destruction of the pancreatic islet (β cells) cells. Islet transplantation has become a promising therapy option for T1D patients, while the lack of suitable tools is difficult to directly evaluate of the viability of the grafted islet over time. Positron emission tomography (PET) as an important non-invasive methodology providing high sensitivity and good resolution, is able to accurate detection of the disturbed biochemical processes and physiological abnormality in living organism. The successful PET imaging of islets would be able to localize the specific site where transplanted islets engraft in the liver, and to quantify the level of islets remain alive and functional over time. This information would be vital to establishing and evaluating the efficiency of pancreatic islet transplantation. Many novel imaging agents have been developed to improve the sensitivity and specificity of PET islet imaging. In this article, we summarize the latest developments in carbon-11, fluorine-18, copper-64, and gallium-68 labeled radioligands for the PET imaging of pancreatic islet cells.
Core tip: Positron emission tomography (PET) is an important non-invasive functional imaging modality that is being explored for the purpose of quantifying engrafted pancreatic islet. There are still several issues that must be overcome before PET can be adopted as the gold standard for the accurate, noninvasive, and non-toxic evaluation of native β cells or pancreatic islet mass in vivo, which remains a difficultly and highly challenging goal. To complement the previous review published in 2010 by our group, this review summarizes the latest developments in PET tracers (such as carbon-11, fluorine-18, copper-64 and gallium-68) for the imaging of pancreatic islet cells.