BPG is committed to discovery and dissemination of knowledge
Minireviews
Copyright ©The Author(s) 2025.
World J Cardiol. Oct 26, 2025; 17(10): 109961
Published online Oct 26, 2025. doi: 10.4330/wjc.v17.i10.109961
Table 1 Diagnostic value of circulating microRNA levels in acute myocardial infarction
Ref.
Patients (n)
miRNA
Standard
AUC
95%CI
P value
Zhang et al[28], 2015110 AMImiRNA-486Quantitative real-time PCR0.731-< 0.001
miRNA-1500.678-< 0.001
miRNA-486
miRNA-150
0.771-< 0.001
Peng et al[29], 2014186 AMImiRNA -133Quantitative reverse transcriptase-PCR
0.912-< 0.001
miRNA-12910.695< 0.001
miRNA-663b0.611< 0.01
Wang et al[30], 201445 AMImiRNA-361-5p0 hoursQuantitative real-time PCR0.8810.777–0.985< 0.001
4 hours0.8830.777–0.989< 0.001
24 hours0.8380.716–0.961< 0.001
miRNA-21-5p0 hour0.9490.872–1.000< 0.001
4 hours0.9470.000–1.000< 0.001
24 hours0.7910.655–0.9270.001
miRNA-519e-5p0 hours0.7980.663–0.9340.001
4 hours0.8010.668–0.9340.002
24 hours0.9080.818–0.997< 0.001
Combined score0 hour0.9890.000–1.000< 0.001
4 hours1.0000.000–1.000< 0.001
24 hours0.9950.000–1.000< 0.001
Zhao et al[31], 2023183 ACSmiRNA-483-5pQuantitative reverse transcriptase-PCR0.9190.881-0.957-
78 AMI0.8670.800-0.933-
Xue et al[32], 201931 AMImiRNA-26a-1Pre-PCIQuantitative real-time PCR0.965-< 0.001
Post-PCI0.939-< 0.001
miRNA-146aPre-PCI0.911-< 0.001
Post-PCI0.932-< 0.001
miRNA-199a-1Pre-PCI0.855-< 0.001
Post-PCI0.823-< 0.001
Combined Pre-PCI0.913-< 0.001
Post-PCI0.890-< 0.001
Table 2 Prognostic value of microRNA levels in predicting post-acute myocardial infarction major adverse cardiovascular events
Ref.
Patients, (n)
miRNA
Follow-up period in months
Standard
Cut off (%)
HR (95%CI)
P value
Xiao et al[27], 2021192 AMImiRNA-146a40 Quantitative real-time PCR-1.329
(1.060–1.664)
0.01
Alavi-Moghaddam et al[35], 201821 AMImiRNA-208b6 Quantitative real-time PCR12.385.08
(1.13–22.82)
0.03
Zhao et al[31], 2023183 ACSmiRNA-483-5p6 Quantitative reverse transcriptase-PCR-5.955
(1.928-18.389)
0.002
Table 3 Prognostic value of microRNA polymorphism in predicting post-acute myocardial infarction major adverse cardiovascular events
Ref.
Patients (n)
Genetic models
Analyzed model
Population-follow-up period
Standard
HR (95%CI)
P value
Qiao et al[40], 2023612 ACSmiRNA-146a, rs2910164Dominant (CC vs CG + GG)42 months screening for MACEABI PRISM3730 DNA Sequencer1.405 (1.018-1.939)0.038
Recessive (CC + CG vs GG)1.107 (0.821–1.492)0.506
Li et al[44], 20151004 CADmiRNA-146a, rs2910164Dominant (CC vs CG + GG)5 years screening for MACEPCR-based method1.119 (0.848-1.478)0.427
Recessive (CC + CG vs GG)1.095 (0.787-1.524)0.591
Dominant (CC vs CG + GG)5 years screening for mortality0.762 (0.485-1.197)0.396
Recessive (CC + CG vs GG)0.757 (0.398-1.439)0.203
Table 4 Summary of diagnostic and prognostic roles of circulating microRNAs and single nucleotide polymorphisms in acute myocardial infarction
miRNA/SNP
Biological function
AMI diagnostic value
MACE prognostic value
Associated pathway
miR-150Anti-apoptotic, anti-fibroticAUC 0.678–0.771[28]Predictor of mortality, LV remodeling[18]SRF, c-Myb, apoptosis
miR-208bCardiac-specific, involved in muscle gene regulationAUC > 0.9 within 3–6 hours[19]HR = 5.08 for MACE at 6 months[35]Myocardial contractility genes
miR-483-5pInflammation-relatedAUC = 0.867–0.919[31]HR = 5.955 for MACE[31]NF-κB, cytokines
miR-146aRegulates IRAK1/TRAF6AUC = 0.91[32]HR = 2.712 for MACE[8]NF-κB, IL-1R/TLR
SNP rs2910164 (miR-146a)Alters miRNA processing, G/C substitution↑Risk of AMI[38,40]HR = 1.405 for MACE (dominant model)[57]Inflammatory amplification
SNP rs11614913 (miR-196a2)Influences mature miRNA levelsAssociated with severe CAD[39]HR = 2.44 (recessive model)[58]Vascular remodeling, SIRT1 signaling
SNP rs3746444 (miR-499)Affects cardiac muscle gene regulationPredictor of MI susceptibility[58]HR = 2.05 for MACE (recessive model)[58]Myocardial apoptosis and necrosis
Table 5 Diagnostic value of microRNA polymorphisms in acute myocardial infarction
Ref.
Patients, n
miRNA
Analyzed model
Standard
OR (95%CI)
P value
Wang et al[55], 2017353 CADmicroRNA-146a, rs2431697T allele carriersMALDI-TOF MS, Sequenom MassARRAY system1.26 (1.04-1.53)0.018
microRNA-146a, rs2910164G allele carriers0.73 (0.62-0.86)< 0.001
Tie et al[56], 2023151 CADmicroRNA-146a, rs2910164Dominant (CG + GG vs CC)Real-time PCR1.59 (0.76–2.81)0.014
Recessive (CC vs TT + TC)0.91 (0.53–2.04)0.320
miRNA-146a, rs41291957Dominant (AA + GA vs GG)0.71 (0.53–1.35)0.680
Recessive (AA vs GG + GA)0.66 (0.21–1.12)0.17
Agiannitopoulos et al[58], 202080 MImiRNA-146a, rs2910164Dominant (CC + CG vs GG) PCR-RFLP, HRM, Sanger Sequencing0.97 (0.57-1.63)1.000
Recessive (CG + GG vs CC)1.37 (0.55-3.37)0.478
miRNA-149a, rs2292832Dominant (CT + TT vs CC)1.03 (0.61-1.74)1.000
Recessive (CC + CT vs TT)1.18 (0.56-2.47)0.700
miRNA-196aC, rs11614913Dominant (CT + TT vs CC)1.73 (1.02-2.92)0.047
Recessive (CC + CT vs TT)2.44 (1.13-5.27)0.031
miRNA-499, rs3746444Dominant (AG + GG vs AA)1.87 (1.08-3.24)0.031
Recessive (AA + AG vs GG)2.05 (1.07-3.90)0.035
Huang et al[42], 2015718
ACS
miRNA-146a, rs11614913Dominant (TC + CC vs TT)Real time quantitative PCR system1.10 (0.84-1.44)0.488
Recessive (CC vs TT + TC)1.00-
717
ACS
miRNA-146a, rs2910164Dominant (CG + GG vs CC)
0.77 (0.60-0.99) 0.044
Recessive (CC + CG vs GG)
1.07 (0.79-1.45)0.673
Zhao et al[59], 20195202
CHD
miRNA-146a, rs2910164Dominant (CC vs CG + GG)Systematic review0.8 (0.73–0.87)< 0.001
Recessive (CC + CG vs GG)0.86 (0.76-0.98)< 0.001