BPG is committed to discovery and dissemination of knowledge
Review
Copyright ©The Author(s) 2026.
World J Gastrointest Oncol. Jan 15, 2026; 18(1): 113553
Published online Jan 15, 2026. doi: 10.4251/wjgo.v18.i1.113553
Table 1 Involved microRNA’s in key alterations of the colorectal cancer microenvironment[14,105,132-149]
miR
Cell type
Conditions
Context (hipoxy/inflammation/acidosis)
Key effect on TME
Ref.
miR-210Epitelial tumor CRCProgression tumor and metastasisHypoxia-upregulatedClassic “hypoxamiR”: Induced by HIF-1α; promotes adaptation to hypoxia, invasion and resistanceCoronel-Hernández et al[132]
miR-21Tumor/epithelial cells and exosome-mediated transfer to stromal, endothelial, and immune cellsPrimary tumor and progression tumorInflammation (IL-6/STAT3) and angiogenesis upregulatedRole as an oncomiR; suppresses PTEN and PDCD4; potentiates IL-6/STAT3 signaling, thereby promoting invasion and metastasis; contributes to the establishment of a pro-angiogenic TMELai et al[133]
miR-25-3pExosomes released from tumor epithelial cells to target endothelial cellsProgression tumorHypoxia/angiogenesis (TME) upregulatedEnhances vascular permeability and angiogenesis through the KLF2/KLF4 axis regulating VEGFR2, ZO-1, occludin, and claudin-5; contributing to the establishment of pre-metastatic nicheXiong et al[134]
miR-1229Exosomes released from tumor epithelial cells to target endothelial cellsProgression tumorHypoxia/angiogenesis (TME) upregulatedPromotes tube formation by inhibiting HIPK2 and enhancing VEGFSoheilifar et al[135]
miR-320Epithelial/estromal (colon) IL-6R/STAT3Primary tumor and metastasisInflammation (CAC) downregulatedInhibits IL-6R STAT3 signaling and reduces tumorigenesis in colitis-associated CRCWu et al[136]; Mjelle et al[137]
miR-590-3p (CAF-exosomal)CAFs (exosomes) tumoral cellsProgression tumorDamage response/TME stress upregulatedConfers radioresistance and activates PI3K/AKT; an example of TME remodeling by CAFsGou et al[138]
miR-34aEpithelial cells to tumoral cellsPrimary tumor supress metastasisHipoxia-inflammation/TME downregulatedp53mt-miR-34a suppresses EMT; IL-6/STAT3 downregulates miR-34a, establishing a pro-inflammatory and pro-EMT feedback loopWłodarczyk et al[139]; Zhang et al[140]
miR-338-5pEpithelialPrimary tumor, progression and drug resistanceHypoxia/inflammation downregulatedDeficiency of miR-338-5p enhances IL-6/STAT3 signaling and confers resistance to oxaliplatin, fostering a pro-inflammatory TMEValencia-Cervantes and Sierra-Vargas[141]
miR-19aEpithelialProgression tumorInflammation/survival upregulated (hypoxia conditions)Suppression of PTEN-PI3K/AKT signaling promotes proliferation and invasion, further sustained by IL-6/STAT3 activationRahbar Farzam et al[142]
miR-135b-5p (CAF-exosomal)CAFs (exosomes) epithelial and endothelial cellsProgression tumorHypoxia/inflammation upregulatedExosomes derived from CAFs upregulate miR-135b-5p, leading to TXNIP suppression and enhanced tumor growth and angiogenesisUmezu et al[143]; Shao et al[144]
miR-425-5p (exosomal)Tumor (exosomes) macrophages/TProgression tumorInmunosupression upregulatedInduction of M2-like polarization along with suppression of the pro-inflammatory T-cell response contributes to tumor progression and increased vascular permeabilityFeng et al[145]
miR-934 (exosomal)Tumor (exosomes) macrophages (liver)Upregulated metastasisInflammation/metastasisInduces M2 polarization and facilitates hepatic metastasisZhao et al[105]
miR-128-3pTumor (exosomes) epithelialPrimary tumor and progressionInflammation (STAT3) upregulatedActivation of JAK/STAT3 and TGF-β/SMAD signaling promotes EMT and metastatic progressionRahbar Farzam et al[142]
miR-9-5pEpithelial tumoral to SLC9A1/NHE1 (antiport Na+/H+)Progression tumor and metastasisAcidosis upregulatedModulation of NHE1 contributes to extracellular acidification, which in turn facilitates tumor invasion and metastasisWang et al[146]
miR-224-5pEpithelial tumoral (HT29) SLC4A4/NBCe1 (Na+/HCO3-)ProgressionAcidosis upregulatedRepression of HCO3- transport diminishes pH buffering capacity, thereby exacerbating tumor acidosisYi and Yu[147]
miR-34aEpithelial tumoral LDHA (lactate dehydrogenase A)Primary tumor and progressionAcidosis downregulatedAcidosis suppress p53wt downregulation of miR-34a increases LDHA expression, leading to elevated lactate levels and acidosis; it also promotes EMT and therapy resistanceLi et al[14]; Xiong et al[134]
miR-143Epithelial tumoral hexokinase 2Primary tumor overexpresssion metastasisAcidosis downregulatedLoss of this factor promotes glycolytic flux and lactate accumulation, exacerbating tumor acidosisGregersen et al[148]; Guo et al[149]
Table 2 MicroRNA’s associated with colorectal cancer molecular subtype and their clinical relevance[150,151]
CMS class
Molecular features
Frequency (%)
Immune phenotype
Prognosis
miR
Ref.
CMS1: Immune MSICIMP (increase); BRAFV600E m; hypermutated; KRASwt; TP53wt14Immune activation and infiltration LTC and NKIntermediate prognosis; good early disease control but poor survival after relapsemiR-625 (increase), miR-31 (increase), miR-155 (increase)Adam et al[150]
CMS2: Canonical (epithelial differentiation)CIMP negative; BRAFwt; KRASwt; TP53m37WNT and MYC activation. Immune dessertBest overallmiR-592 (increase), miR-552 (increase)Adam et al[150]
CMS3: MetabolicCIMP negative; BRAFwt; KRASm; TP53wt13Metabolic deregulationPoor immunogenicitymiR-625 (increase)Adam et al[150]
CMS4: MesenchymalCIMP negative; BRAFwt; KRASwt23Stromal infiltration (macrophages) TGF-β activator-CSC EMT and angiogenesisWorse and poor survival. Resistant standard treatmentmiR-625 (decrease), miR-143 (increase) (CMS4 vs CMS2); miR-200 (decrease), miR-218 (increase)Adam et al[150]; Gherman et al[151]
Table 3 MicroRNA’s modulating colorectal cancer survivor and invasive pathways[31,36,37,39,47,53,58-60,63,70-72,76,77,79,82-84,98,124,152-169]
miR
Expression
Study model
Target genes
Modulated pathways
Ref.
miR-145-5pDownregulatedIn vitroN-RAS and IRS1Cell proliferation by AKT inactivationYin et al[152]
miR-145-5pDownregulatedIn vitroCDCA3Cell proliferation, migration, invasion, EMTChen et al[84]
miR-145-5pDownregulatedIn vitroTWIST1Migration and invasionShen et al[153]
miR-145-5pDownregulatedIn vitroMAPK1Cell proliferation, migration, and invasionYang et al[154]
miR-145-5pDownregulatedIn vitroSIP1Cell proliferation, migration, and invasionSathyanarayanan et al[155]
miR-145-5pDownregulatedIn vitroPAK4Migration and invasionSheng et al[59]
miR-145-5pDownregulatedIn vitro and in vivop70S6K1Tumor growth and angiogenesis by HIF-1 and VEGFXu et al[156]
miR-145-5pDownregulatedIn vitro and in vivoLASP1Invasion and metastasisWang et al[58]
miR-145-5pDownregulatedIn vitroCXCL1 and ITGA2Cell proliferation and migrationZhuang et al[60]
miR-16-5pDownregulatedIn vitro and in vivoPVT1Cell proliferation, migration, and invasion by VEGFA and p-AKTRahmati et al[98]
miR-16-5pDownregulatedIn vitro and in vivoITGA2Apoptosis and tumor growthXu et al[36]
miR-16-5pDownregulatedIn vitroBIRC5Apoptosis, cell proliferation, and angiogenesisAslan et al[47]
miR-16-5pDownregulatedIn vitroFOXK1Cell proliferation and angiogenesis by PI3K/AKT/mTOR signalingHuang et al[37]
miR-16-5pDownregulatedIn vitro and in vivoHMGA2Migration, invasion, and EMT by β-catenin pathwayCai et al[63]
miR-199a-3pDownregulatedIn vitroPAK4 and BCAR3Cell proliferation, migration and invasionHou et al[70]
miR-199a-3pDownregulatedIn vitroFN1EMT by N-cadherin and vimentinLin et al[71]
miR-199a-3pDownregulatedIn vitroNLKMetastasisHan et al[72]
miR-199a-3pDownregulatedIn vitroTGFBR1 and PDGFRBCell proliferation by MAPK-signalingSlattery et al[157]
miR-21-3pUpregulatedIn vitro and in vivoSMAD7EMT through the increase of N-cadherinJiao et al[39]
miR-21-3pUpregulatedIn vitroRBPMSMigration, invasion, and apoptosis by Smad4/ERK signalingHou et al[53]
miR-21-5pUpregulatedIn vitro and in vivoKRIT1Angiogenesis through β-catenin signaling pathway, VEGFA and CCND1He et al[31]
miR-21-5pUpregulatedIn vitro and in vivoPDCD4 and TGFBR2Stemness promotion by upregulation of β-catenin, c-MYC and cyclin-D1Yu et al[158]
miR-21-5pUpregulatedIn vitro and in vivoPTENApoptosis, cell proliferation and invasionWu et al[76]; Lin et al[77]
miR-21-5pUpregulatedIn vitro and in vivoCHL1Cell proliferation, invasion and tumor growthYu et al[79]
miR-21-5pDownregulatedIn vitroTGFBIPyroptosisJiang et al[82]
DownregulatedIn vitroSATB1Cells sensitive to chemoradiationLopes-Ramos et al[83]
miR-4461DownregulatedIn vitroCOPB2Cell proliferation, migration, and invasionChen et al[159]
miR-449aDownregulatedIn vitroHDAC1, TGFB, SATB2, ADAM10, MYC, and MAPK1Cell proliferation, invasion and poor survivalIshikawa et al[160]
miR-519d-3pDownregulatedIn vitroTROAPApoptosis, cell proliferation, migration, and invasionYe and Lv[161]
miRNA-31UpregulatedIn vitroSTK40NF-κB signaling pathway and invasionZhu and Xue[162]
miR-200aUpregulatedIn vitroPTENCell proliferation, migration and invasionLi et al[163]
miRNA-552UpregulatedIn vitroPTENPoor prognosisIm et al[164]
miRNA-552UpregulatedIn vitro and in vivoADAM28Cell proliferation, migration and tumor growthWang et al[165]
miR-592UpregulatedIn vitromTOR and FOXOCell proliferation, migration and invasionPan et al[166]
miR-708 and miR-31UpregulatedIn vitroCDKN2BCell proliferation, invasion and apoptosis resistanceLei et al[167]
miR-25UpregulatedIn vitro and in vivoSIRT6Metastasis through inhibited LIN28B/NRP1 axisWang et al[168]
miR-130b-3pUpregulatedIn vitro and in vivoCHD9Cell proliferation and tumor growthSong et al[169]
miRNA-221UpregulatedIn vitro and in vivoTP53BP2Cell proliferation through TP53 inhibitionAli et al[124]
Table 4 MicroRNA’s associated with treatment response and therapeutic outcomes in colorectal cancer[26,86,88,91,93,94,170-186]
miR
Mechanism
Study model
Target
Response therapy
Ref.
miR-153-5pOverexpressionIn vitroBCL-2Sensibilize oxaliplatinHe et al[170]
miR-145-5pDecreasedIn vitroBIRC5, Fli-1Sensibilize, 5-FU, oxaliplatinXie et al[171]
miR-1451OverexpressionIn vitro and in vivoSNAI1, HDAC4 and ATF4Sensibilize radiotherapy and 5-FUZhao et al[88]; Zhu et al[172]
miR-150-5pOverexpressionIn vitro and in vivoBIRC5, CASP7, VEGFAAnti-VEGFSlattery et al[173]; Chen et al[174]
miR-195-5pExpressionIn vivoGDPD5Sensibilize 5-FUFeng et al[175]
OverexpressionIn vitroBIRC5, BCL-2, YAPSensibilize, doxorrubicin and oxaliplatinQu et al[176]; Poel et al[177]
miR20b-5p1ExpressionIn vitro and in vivoCTSS, ADAM9, EGFR, CCND1/CDK4/FOXM1 axisSensibilize 5-FUFu et al[178]; Yang et al[179]
miR21-3pOverexpressionIn vitroMDR1 and MRP1Cisplatin resistanceDong et al[86]
miR21-5pOverexpressionIn vitroSATB1, PTEN, MSH2, PDCD4Chemoresistance (oxaliplatin)Chen et al[94]
miR497-5pOverexpressionIn vitro and in vivoKSR1, BCL-2, IGF1-RSensibilize 5-FU, oxaliplatinPoel et al[177]; Wang et al[180]
miR-17-5pOverexpressionIn vitro and in vivoMFN2, vimentin STAT3, E2F1, HMGA2, SOX4, TWIST1, and EGFRResistance oxaliplatin, irinotecan, and fluorouracilKim et al[26]; Sun et al[181]
miR-199b-3p; miR-199a-5pOverexpressionIn vitro and in vivoCRIM1Resistance cetuximab, sensitive cetuximabKim et al[26]; Han et al[93]; Mussnich et al[182]
miR-124OverexpressionIn vitro and in vivoPRRX1Sensitive radiotherapy (inhibition PRRX1)Zhang et al[183]
miR-1226-5pOverexpressionIn vitroIRF1Resistance radiotherapyChoi et al[184]
miR-7-5pDownregulatedIn vitro and in vivoKLF4Resistance radiotherapyShang et al[185]
miR-16-5pDownregulatedIn vitroFOXK, PI3K/AKT/mTORResistance radiotherapyMousavikia et al[91]
miR-423-5pDownregulatedIn vitroBCL-2Resistance radiotherapyShang et al[186]
Table 5 Mesenchymal stem cell-derived exosome-based strategies for microRNA delivery in colorectal cancer[36,159,187-192]
Exo-miR
Cell delivery
Study model
Mechanism
Ref.
Exo-miR30a; miR222hCC-MSCIn vitro and in vivoGrowth (increase), migration and metastasis (inhibit MIA3)Du et al[187]
Exo-miR4461hBM-MSCIn vitroThe proliferation, migration and invasion by down-regulating COPB2 (decrease)Chen et al[159]
Exo-miR22-3phBM-MSCIn vitroProliferation and invasion (RAP2B/PI3K/AKT pathway) (decrease)Wang and Lin[188]
Exo-miR-16-5phBM-MSCIn vitro and in vivoProliferation, invasion and migration (downregulating ITGA2) (decrease)Xu et al[36]
Exo-miR431-5phUC-MSCIn vitro and in vivoProgression (suppress PRDX1) (decrease)Qu et al[189]
Exo-anti-miR-146b-5p ASOhUC-MSCIn vitro and in vivoProliferation, migration and EMT (inhibition of Smad signaling) (decrease)Yu et al[190]
Exo-miR-486-5phUC-MSCIn vitroGlycolysis and cell stemness by targeting NEK2 (decrease)Cui et al[191]
Exo-miR-431-5phUC-MSCIn vitro and in vivoCell growth and progression by inhibiting PRDX1 (decrease)Qu et al[189]
1Exo-miR-199a-3pAMSCsIn vitro and in vivoSensitized to chemotherapeutic agents by targeting mTOR pathwayLou et al[192]