Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. Dec 15, 2025; 17(12): 114037
Published online Dec 15, 2025. doi: 10.4251/wjgo.v17.i12.114037
Published online Dec 15, 2025. doi: 10.4251/wjgo.v17.i12.114037
Table 1 Scanning parameters of different computed tomography devices
| Devices | Revolution aca (GE) | Ingenuity core 64 (Philips) | Revolution (GE) |
| Layer thickness (mm) | 5 | 5 | 5 |
| Layer interval (mm) | 5 | 5 | 5 |
| Tube voltage (kV) | 120 | 120 | 120 |
| Tube current (mA) | 50 | 30 | 50 |
| Matrix | 512 × 512 | 512 × 512 | 512 × 512 |
| Threshold of ROI (HU) | 100 | 150 | 120 |
Table 2 Baseline clinical characteristics analysis
| Clinical feature | Training set (n = 133) | Validation set (n = 58) | ||||
| No early recurrence (n = 77) | Early recurrence (n = 56) | P value | No early recurrence (n = 35) | Early recurrence (n = 23) | P value | |
| Age (year) | 54.49 ± 10.24 | 51.04 ± 10.88 | 0.063 | 50.46 ± 10.31 | 50.17 ± 9.73 | 0.917 |
| BMI (kg/m2) | 22.26 ± 3.46 | 22.00 ± 2.54 | 0.632 | 21.71 ± 3.41 | 22.80 ± 2.29 | 0.183 |
| HBsAg (IU/mL) | 967.49 ± 869.13 | 1019.11 ± 726.57 | 0.496 | 1141.26 ± 1046.98 | 1141.35 ± 762.88 | 0.893 |
| AFP (ng/mL) | 369.27 ± 494.96 | 539.03 ± 519.80 | 0.012 | 523.78 ± 532.39 | 473.20 ± 539.57 | 0.975 |
| ALB (g/L) | 39.35 ± 5.21 | 39.18 ± 4.60 | 0.842 | 41.55 ± 7.36 | 38.83 ± 4.59 | 0.069 |
| AST (IU/L) | 82.31 ± 135.98 | 51.94 ± 27.49 | 0.758 | 64.54 ± 69.10 | 68.47 ± 71.76 | 0.169 |
| ALT (IU/L) | 75.34 ± 118.98 | 50.77 ± 37.14 | 0.531 | 62.21 ± 77.61 | 74.23 ± 98.27 | 0.474 |
| Sex, n (%) | 0.016 | 0.08 | ||||
| Female | 17 (22.08) | 3 (5.36) | 9 (25.71) | 1 (4.35) | ||
| Male | 60 (77.92) | 53 (94.64) | 26 (74.29) | 22 (95.65) | ||
| Drinking, n (%) | 0.173 | 1 | ||||
| No | 54 (70.13) | 32 (57.14) | 24 (68.57) | 15 (65.22) | ||
| Yes | 23 (29.87) | 24 (42.86) | 11 (31.43) | 8 (34.78) | ||
Table 3 Clinical model construction
| Dataset | Model name | Accuracy | AUC | 95%CI | Sensitivity | Specificity |
| Training | RandomForest | 0.677 | 0.766 | 0.6884-0.8443 | 0.893 | 0.519 |
| Test | RandomForest | 0.517 | 0.650 | 0.5106-0.7900 | 0.870 | 0.286 |
| Training | ExtraTrees | 0.632 | 0.678 | 0.5881-0.7671 | 0.661 | 0.61 |
| Test | ExtraTrees | 0.534 | 0.598 | 0.4506-0.7457 | 0.696 | 0.429 |
| Training | MLP | 0.579 | 0.634 | 0.5398-0.7281 | 0.839 | 0.39 |
| Test | MLP | 0.466 | 0.504 | 0.3482-0.6605 | 0.913 | 0.171 |
Table 4 Predictive indicators for different models
| Dataset | Model | Accuracy | AUC | 95%CI | Sensitivity | Specificity |
| Training | Clinical | 0.677 | 0.766 | 0.6884-0.8443 | 0.893 | 0.519 |
| Test | Clinical | 0.517 | 0.650 | 0.5106-0.7900 | 0.870 | 0.286 |
| Training | Radiomics | 0.729 | 0.785 | 0.7083-0.8608 | 0.625 | 0.805 |
| Test | Radiomics | 0.759 | 0.743 | 0.6018-0.8840 | 0.652 | 0.829 |
| Training | Habitat | 0.774 | 0.887 | 0.8328-0.9413 | 0.732 | 0.805 |
| Test | Habitat | 0.741 | 0.830 | 0.7239-0.9357 | 0.87 | 0.657 |
| Training | Combined | 0.857 | 0.941 | 0.9058-0.9764 | 0.946 | 0.792 |
| Test | Combined | 0.845 | 0.933 | 0.8735-0.9923 | 0.826 | 0.857 |
Table 5 Correlation analysis between different characteristics and microvascular invasion, Ki67, GPC-3 expression, and pathological grading in hepatocellular carcinoma
| MVI | Ki-67 | GPC-3 | Grading | |||||
| r value1 | P value | r value1 | P value | r value1 | P value | r value1 | P value | |
| wavelet_HLH_firstorder_Skewness_CT | 0.0535 | 0.4625 | -0.0461 | 0.5267 | 0.1425 | 0.0492 | 0.0441 | 0.5451 |
| h2_wavelet_LHH_glszm_LargeAreaLowGrayLevelEmphasis | -0.0148 | 0.8389 | 0.0354 | 0.6271 | 0.0042 | 0.9535 | -0.0664 | 0.3613 |
| h1_log_sigma_3_0_mm_3D_firstorder_90Percentile | 0.1792 | 0.0131 | 0.1462 | 0.0435 | 0.0572 | 0.4319 | -0.0196 | 0.7883 |
| h3_wavelet_HLH_gldm_SmallDependenceHighGrayLevelEmphasis | 0.0758 | 0.2975 | 0.0514 | 0.4805 | 0.0077 | 0.9154 | -0.0605 | 0.4056 |
| h3_wavelet_HHL_firstorder_RootMeanh3_squared | 0.0687 | 0.3452 | -0.0729 | 0.3163 | 0.1703 | 0.0185 | 0.0198 | 0.786 |
| h3_wavelet_HHL_firstorder_Kurtosis | 0.028 | 0.7007 | -0.0464 | 0.5238 | -0.0733 | 0.3133 | 0.001 | 0.9891 |
| h1_wavelet_LHH_glrlm_LowGrayLevelRunEmphasis | -0.3128 | < 0.001 | -0.1574 | 0.0297 | -0.1179 | 0.1042 | 0.0141 | 0.8467 |
| h1_logarithm_ngtdm_Coarseness | -0.0491 | 0.5004 | -0.0097 | 0.8940 | 0.0301 | 0.6797 | 0.1327 | 0.0672 |
| h1_original_glszm_ZoneVariance | 0.0926 | 0.2024 | 0.0223 | 0.7596 | 0.0289 | 0.6918 | 0.1272 | 0.0796 |
| h3_gradient_firstorder_Skewness | 0.1075 | 0.1389 | 0.0235 | 0.7474 | 0.113 | 0.1195 | 0.0261 | 0.7201 |
| h1_lbp_3D_m1_glszm_HighGrayLevelZoneEmphasis | 0.159 | 0.0281 | 0.1189 | 0.1013 | 0.0419 | 0.5651 | 0.0321 | 0.6594 |
- Citation: Huang LH, Fang YJ, Zheng XJ, Huang C, Li CL, Yu B, Huang MJ, Qin SJ, Huang DY, Lu DW. Application of multimodal fusion technology in early recurrence prediction and pathological analysis of hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17(12): 114037
- URL: https://www.wjgnet.com/1948-5204/full/v17/i12/114037.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i12.114037
