BPG is committed to discovery and dissemination of knowledge
Retrospective Cohort Study
Copyright ©The Author(s) 2025.
World J Gastrointest Oncol. Dec 15, 2025; 17(12): 114037
Published online Dec 15, 2025. doi: 10.4251/wjgo.v17.i12.114037
Table 1 Scanning parameters of different computed tomography devices
Devices
Revolution aca (GE)
Ingenuity core 64 (Philips)
Revolution (GE)
Layer thickness (mm)555
Layer interval (mm)555
Tube voltage (kV)120120120
Tube current (mA)503050
Matrix512 × 512512 × 512512 × 512
Threshold of ROI (HU)100150120
Table 2 Baseline clinical characteristics analysis
Clinical featureTraining set (n = 133)
Validation set (n = 58)
No early recurrence (n = 77)
Early recurrence (n = 56)
P value
No early recurrence (n = 35)
Early recurrence (n = 23)
P value
Age (year)54.49 ± 10.2451.04 ± 10.880.06350.46 ± 10.3150.17 ± 9.730.917
BMI (kg/m2)22.26 ± 3.4622.00 ± 2.540.63221.71 ± 3.4122.80 ± 2.290.183
HBsAg (IU/mL)967.49 ± 869.131019.11 ± 726.570.4961141.26 ± 1046.981141.35 ± 762.880.893
AFP (ng/mL)369.27 ± 494.96539.03 ± 519.800.012523.78 ± 532.39473.20 ± 539.570.975
ALB (g/L)39.35 ± 5.2139.18 ± 4.600.84241.55 ± 7.3638.83 ± 4.590.069
AST (IU/L)82.31 ± 135.9851.94 ± 27.490.75864.54 ± 69.1068.47 ± 71.760.169
ALT (IU/L)75.34 ± 118.9850.77 ± 37.140.53162.21 ± 77.6174.23 ± 98.270.474
Sex, n (%)0.0160.08
    Female17 (22.08)3 (5.36)9 (25.71)1 (4.35)
    Male60 (77.92)53 (94.64)26 (74.29)22 (95.65)
Drinking, n (%)0.1731
    No54 (70.13)32 (57.14)24 (68.57)15 (65.22)
    Yes23 (29.87)24 (42.86)11 (31.43)8 (34.78)
Table 3 Clinical model construction
Dataset
Model name
Accuracy
AUC
95%CI
Sensitivity
Specificity
TrainingRandomForest0.6770.7660.6884-0.84430.8930.519
TestRandomForest0.5170.6500.5106-0.79000.8700.286
TrainingExtraTrees0.6320.6780.5881-0.76710.6610.61
TestExtraTrees0.5340.5980.4506-0.74570.6960.429
TrainingMLP0.5790.6340.5398-0.72810.8390.39
TestMLP0.4660.5040.3482-0.66050.9130.171
Table 4 Predictive indicators for different models
Dataset
Model
Accuracy
AUC
95%CI
Sensitivity
Specificity
TrainingClinical0.6770.7660.6884-0.84430.8930.519
TestClinical0.5170.6500.5106-0.79000.8700.286
TrainingRadiomics0.7290.7850.7083-0.86080.6250.805
TestRadiomics0.7590.7430.6018-0.88400.6520.829
TrainingHabitat0.7740.8870.8328-0.94130.7320.805
TestHabitat0.7410.8300.7239-0.93570.870.657
TrainingCombined0.8570.9410.9058-0.97640.9460.792
TestCombined0.8450.9330.8735-0.99230.8260.857
Table 5 Correlation analysis between different characteristics and microvascular invasion, Ki67, GPC-3 expression, and pathological grading in hepatocellular carcinoma
MVI
Ki-67
GPC-3
Grading
r value1
P value
r value1
P value
r value1
P value
r value1
P value
wavelet_HLH_firstorder_Skewness_CT0.05350.4625-0.04610.52670.14250.04920.04410.5451
h2_wavelet_LHH_glszm_LargeAreaLowGrayLevelEmphasis-0.01480.83890.03540.62710.00420.9535-0.06640.3613
h1_log_sigma_3_0_mm_3D_firstorder_90Percentile0.17920.01310.14620.04350.05720.4319-0.01960.7883
h3_wavelet_HLH_gldm_SmallDependenceHighGrayLevelEmphasis0.07580.29750.05140.48050.00770.9154-0.06050.4056
h3_wavelet_HHL_firstorder_RootMeanh3_squared0.06870.3452-0.07290.31630.17030.01850.01980.786
h3_wavelet_HHL_firstorder_Kurtosis0.0280.7007-0.04640.5238-0.07330.31330.0010.9891
h1_wavelet_LHH_glrlm_LowGrayLevelRunEmphasis-0.3128< 0.001-0.15740.0297-0.11790.10420.01410.8467
h1_logarithm_ngtdm_Coarseness-0.04910.5004-0.00970.89400.03010.67970.13270.0672
h1_original_glszm_ZoneVariance0.09260.20240.02230.75960.02890.69180.12720.0796
h3_gradient_firstorder_Skewness0.10750.13890.02350.74740.1130.11950.02610.7201
h1_lbp_3D_m1_glszm_HighGrayLevelZoneEmphasis0.1590.02810.11890.10130.04190.56510.03210.6594