BPG is committed to discovery and dissemination of knowledge
Retrospective Study
Copyright ©The Author(s) 2025.
World J Gastrointest Oncol. Dec 15, 2025; 17(12): 112873
Published online Dec 15, 2025. doi: 10.4251/wjgo.v17.i12.112873
Table 1 Patients’ characteristics, n (%)
Characteristics
Patients (n = 212)
Gender
    Male200 (94.3)
    Female12 (5.7)
Age (mean ± SD; range)58.8 ± 8.9 (34-80)
Height (cm), mean ± SD166.0 ± 6.5
Weight (kg), mean ± SD61.7 ± 11.3
BMI (kg/m2), mean ± SD22.3 ± 3.6
Histological subtype
    Adenocarcinoma7 (3.3)
    Squamous cell carcinoma205 (96.7)
T stage
    T111 (5.2)
    T27 (3.3)
    T3178 (84.0)
    T416 (7.5)
N stage
    N015 (7.1)
    N163 (29.7)
    N282 (38.7)
    N352 (24.5)
M stage
    M0182 (86.3)
    M129 (13.7)
ECOG
    025 (11.8)
    1169 (79.7)
    ≥ 28 (3.8)
    NA10 (4.7)
CT follow-up date from first CCRT (days), mean ± SD105.4 ± 38.0
Surgery treatment95 (44.8)
Surgery date from first CCRT (days), mean ± SD96.5 ± 82.3
Survival rate
    1-year149 (70.3)
    2-year101 (47.6)
    3-year82 (38.7)
Table 2 The features selected from feature subset 1 using least absolute shrinkage and selection operator, with the Cox regression analysis
Covariate
HR (95%CI)
P value
clinical_T1.90 (1.27-2.84)0.002
clinical_N1.32 (1.08-1.61)0.006
clinical_M2.04 (1.30-3.18)0.002
ECOG1.60 (1.38-2.02)0.024
sarco01.42 (1.35-1.50)0.044
TATSMR11.23 (0.93-1.33)0.047
delta_SAT1.00 (1.00-1.37)0.024
Table 3 The features selected from feature subset 2 using least absolute shrinkage and selection operator, with the Cox regression analysis
Covariate
HR (95%CI)
P value
clinical_M2.13 (1.26-3.60)0.005
clinical_T1.91 (1.23-2.95)0.004
MUSCLE_shape_Sphericity00.00 (0.00-0.01)0.014
VAT_firstorder_Mean01.02 (0.99-1.06)0.016
VAT_glcm_ClusterShade01.17 (1.00-1.37)0.047
VAT _shape_Elongation033.31 (2.14-519.51)0.012
VAT_shape_Sphericity00.00 (0.00-0.00)0.001
VAT_shape_SurfaceVolumeRatio01.76 (0.97-3.21)0.045
Table 4 The features selected from feature subset 3 using least absolute shrinkage and selection operator, with the Cox regression analysis
Covariate
HR (95%CI)
P value
clinical_M2.13 (1.26-3.60)0.005
clinical_T1.91 (1.23-2.95)0.004
MUSCLE_original_glszm_LargeAreaEmphasis11.00 (1.00-1.00)0.003
VAT_original_firstorder_10Percentile11.01 (1.01-1.03)0.032
VAT_original_firstorder_90Percentile11.11 (1.04-1.19)0.002
VAT_original_firstorder_Mean11.04 (1.01-1.07)0.002
VAT_original_firstorder_Minimum11.26 (1.26-6.01)0.049
VAT_original_glcm_JointEnergy112.19 (1.38-394.85)0.016
VAT_original_glcm_JointEntropy11.71 (1.32-2.58)0.040
VAT_original_gldm_DependenceVariance10.94 (0.91-0.98)0.002
VAT_original_glrlm_LongRunLowGrayLevelEmphasis11.06 (1.05-3.39)0.009
VAT_original_glrlm_RunEntropy10.09 (0.02-0.37)0.001
VAT_original_glszm_GrayLevelNonUniformityNormalized11.03 (1.00-6.68)0.012
VAT_original_glszm_SizeZoneNonUniformityNormalized11.06 (1.00-10.47)0.029
Table 5 The features selected from feature subset 4 using least absolute shrinkage and selection operator, with the Cox regression analysis
Covariate
HR (95%CI)
P value
clinical_M2.13 (1.26-3.60)0.005
clinical_T1.91 (1.23-2.95)0.004
MUSCLE_original_glszm_LargeAreaEmphasis11.00 (1.00-1.00)0.003
MUSCLE_original_shape_Sphericity01.02 (1.00-1.03)0.049
SAT_original_firstorder_Skewness00.71 (0.46-0.99)0.041
VAT_original_firstorder_10Percentile11.01 (1.00-1.03)0.032
VAT_original_firstorder_90Percentile11.11 (1.04-1.19)0.002
VAT_original_firstorder_Mean11.04 (1.01-1.07)0.002
VAT_original_glcm_JointEnergy112.19 (0.38-394.85)0.042
VAT_original_gldm_DependenceVariance10.94 (0.91-0.98)0.002
VAT_original_glrlm_LongRunLowGrayLevelEmphasis10.00 (0.00-2.39)0.049
VAT_original_glrlm_RunEntropy10.09 (0.02-0.37)0.001
VAT_original_glszm_GrayLevelNonUniformityNormalized15606.87 (0.12-270661365.71)0.041
VAT_original_shape_SurfaceVolumeRatio01.76 (0.97-3.21)0.045
delta_VAT_original_shape_Sphericity10.24 (0.06-1.02)0.042
Table 6 Summary of all final selected clinical, body composition analysis, and radiomic features across feature subsets 1 to 4

Feature subset 1
Feature subset 2
Feature subset 3
Feature subset 4
Clinicalclinical_T, clinical_N, clinical_M, ECOGclinical_T, clinical_Mclinical_T, clinical_Mclinical_T, clinical_M
BOAdelta_SAT, TAT/SMI, sarco0
Radiomics (pretreatment)MUSCLE_original_shape_Sphericity0, VAT_shape_Elongation0, VAT_shape_Sphericity0, VAT_shape_SurfaceVolumeRatio0, VAT_firstorder_Mean0, VAT_glcm_ClusterShade0MUSCLE_original_shape_Sphericity0, VAT_shape_SurfaceVolumeRatio0, SAT_firstorder_Skewness0
Radiomics (f/u)MUSCLE_original_glszm_LargeAreaEmphasis1, VAT_firstorder_10Percentile1, VAT_firstorder_90Percentile1, VAT_firstorder_Mean1, VAT_firstorder_Minimum1, VATl_glcm_JointEnergy1, VAT_glcm_JointEntropy1, VAT_gldm_DependenceVariance1, VAT_glrlm_LongRunLowGrayLevelEmphasis1, VAT_glrlm_RunEntropy1, VAT_glszm_GrayLevelNonUniformityNormalized1, VAT_glszm_SizeZoneNonUniformity1MUSCLE_glszm_LargeAreaEmphasis1, VAT_firstorder_10Percentile1, VAT_firstorder_90Percentile1, VAT_firstorder_Mean1, VAT_glcm_JointEnergy1, VAT_gldm_DependenceVariance1, VAT_glrlm_LongRunLowGrayLevelEmphasis1, VAT_glrlm_RunEntropy1, VAT_glszm_GrayLevelNonUniformityNormalized1, delta_VAT_shape_Sphericity1
Table 7 Model performances across different input combinations for 1-year, 2-year, and 3-year survival prediction
InputModels1-year
2-year
3-year
AUC
Sensitivity
Specificity
AUC
Sensitivity
Specificity
AUC
Sensitivity
Specificity
Subset 1: No-radiomicsSVC0.6910.460.830.730.700.660.640.730.51
LR0.670.580.730.8410.730.820.660.630.68
ETC0.660.500.780.770.650.780.710.880.45
Nomogram0.670.510.760.700.860.440.7110.650.71
Subset 2: PretreatmentSVC0.660.810.470.730.820.540.680.750.52
LR0.650.670.560.7710.700.700.7610.670.80
ETC0.640.650.540.760.800.560.680.490.85
Nomogram0.7110.770.610.690.740.540.690.820.47
Subset 3: Follow-upSVC0.600.550.650.740.690.670.530.680.45
LR0.610.620.600.8110.710.800.530.580.59
ETC0.600.560.630.760.780.610.640.610.64
Nomogram0.7010.730.590.710.710.640.7010.750.61
Subset 4: CombinationSVC0.600.420.790.840.630.820.590.470.66
LR0.610.800.360.9110.810.880.550.680.54
ETC0.600.510.700.810.620.850.640.620.64
Nomogram0.7310.850.520.730.640.690.7410.720.67