Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. Dec 15, 2025; 17(12): 112873
Published online Dec 15, 2025. doi: 10.4251/wjgo.v17.i12.112873
Published online Dec 15, 2025. doi: 10.4251/wjgo.v17.i12.112873
Table 1 Patients’ characteristics, n (%)
| Characteristics | Patients (n = 212) |
| Gender | |
| Male | 200 (94.3) |
| Female | 12 (5.7) |
| Age (mean ± SD; range) | 58.8 ± 8.9 (34-80) |
| Height (cm), mean ± SD | 166.0 ± 6.5 |
| Weight (kg), mean ± SD | 61.7 ± 11.3 |
| BMI (kg/m2), mean ± SD | 22.3 ± 3.6 |
| Histological subtype | |
| Adenocarcinoma | 7 (3.3) |
| Squamous cell carcinoma | 205 (96.7) |
| T stage | |
| T1 | 11 (5.2) |
| T2 | 7 (3.3) |
| T3 | 178 (84.0) |
| T4 | 16 (7.5) |
| N stage | |
| N0 | 15 (7.1) |
| N1 | 63 (29.7) |
| N2 | 82 (38.7) |
| N3 | 52 (24.5) |
| M stage | |
| M0 | 182 (86.3) |
| M1 | 29 (13.7) |
| ECOG | |
| 0 | 25 (11.8) |
| 1 | 169 (79.7) |
| ≥ 2 | 8 (3.8) |
| NA | 10 (4.7) |
| CT follow-up date from first CCRT (days), mean ± SD | 105.4 ± 38.0 |
| Surgery treatment | 95 (44.8) |
| Surgery date from first CCRT (days), mean ± SD | 96.5 ± 82.3 |
| Survival rate | |
| 1-year | 149 (70.3) |
| 2-year | 101 (47.6) |
| 3-year | 82 (38.7) |
Table 2 The features selected from feature subset 1 using least absolute shrinkage and selection operator, with the Cox regression analysis
| Covariate | HR (95%CI) | P value |
| clinical_T | 1.90 (1.27-2.84) | 0.002 |
| clinical_N | 1.32 (1.08-1.61) | 0.006 |
| clinical_M | 2.04 (1.30-3.18) | 0.002 |
| ECOG | 1.60 (1.38-2.02) | 0.024 |
| sarco0 | 1.42 (1.35-1.50) | 0.044 |
| TATSMR1 | 1.23 (0.93-1.33) | 0.047 |
| delta_SAT | 1.00 (1.00-1.37) | 0.024 |
Table 3 The features selected from feature subset 2 using least absolute shrinkage and selection operator, with the Cox regression analysis
| Covariate | HR (95%CI) | P value |
| clinical_M | 2.13 (1.26-3.60) | 0.005 |
| clinical_T | 1.91 (1.23-2.95) | 0.004 |
| MUSCLE_shape_Sphericity0 | 0.00 (0.00-0.01) | 0.014 |
| VAT_firstorder_Mean0 | 1.02 (0.99-1.06) | 0.016 |
| VAT_glcm_ClusterShade0 | 1.17 (1.00-1.37) | 0.047 |
| VAT _shape_Elongation0 | 33.31 (2.14-519.51) | 0.012 |
| VAT_shape_Sphericity0 | 0.00 (0.00-0.00) | 0.001 |
| VAT_shape_SurfaceVolumeRatio0 | 1.76 (0.97-3.21) | 0.045 |
Table 4 The features selected from feature subset 3 using least absolute shrinkage and selection operator, with the Cox regression analysis
| Covariate | HR (95%CI) | P value |
| clinical_M | 2.13 (1.26-3.60) | 0.005 |
| clinical_T | 1.91 (1.23-2.95) | 0.004 |
| MUSCLE_original_glszm_LargeAreaEmphasis1 | 1.00 (1.00-1.00) | 0.003 |
| VAT_original_firstorder_10Percentile1 | 1.01 (1.01-1.03) | 0.032 |
| VAT_original_firstorder_90Percentile1 | 1.11 (1.04-1.19) | 0.002 |
| VAT_original_firstorder_Mean1 | 1.04 (1.01-1.07) | 0.002 |
| VAT_original_firstorder_Minimum1 | 1.26 (1.26-6.01) | 0.049 |
| VAT_original_glcm_JointEnergy1 | 12.19 (1.38-394.85) | 0.016 |
| VAT_original_glcm_JointEntropy1 | 1.71 (1.32-2.58) | 0.040 |
| VAT_original_gldm_DependenceVariance1 | 0.94 (0.91-0.98) | 0.002 |
| VAT_original_glrlm_LongRunLowGrayLevelEmphasis1 | 1.06 (1.05-3.39) | 0.009 |
| VAT_original_glrlm_RunEntropy1 | 0.09 (0.02-0.37) | 0.001 |
| VAT_original_glszm_GrayLevelNonUniformityNormalized1 | 1.03 (1.00-6.68) | 0.012 |
| VAT_original_glszm_SizeZoneNonUniformityNormalized1 | 1.06 (1.00-10.47) | 0.029 |
Table 5 The features selected from feature subset 4 using least absolute shrinkage and selection operator, with the Cox regression analysis
| Covariate | HR (95%CI) | P value |
| clinical_M | 2.13 (1.26-3.60) | 0.005 |
| clinical_T | 1.91 (1.23-2.95) | 0.004 |
| MUSCLE_original_glszm_LargeAreaEmphasis1 | 1.00 (1.00-1.00) | 0.003 |
| MUSCLE_original_shape_Sphericity0 | 1.02 (1.00-1.03) | 0.049 |
| SAT_original_firstorder_Skewness0 | 0.71 (0.46-0.99) | 0.041 |
| VAT_original_firstorder_10Percentile1 | 1.01 (1.00-1.03) | 0.032 |
| VAT_original_firstorder_90Percentile1 | 1.11 (1.04-1.19) | 0.002 |
| VAT_original_firstorder_Mean1 | 1.04 (1.01-1.07) | 0.002 |
| VAT_original_glcm_JointEnergy1 | 12.19 (0.38-394.85) | 0.042 |
| VAT_original_gldm_DependenceVariance1 | 0.94 (0.91-0.98) | 0.002 |
| VAT_original_glrlm_LongRunLowGrayLevelEmphasis1 | 0.00 (0.00-2.39) | 0.049 |
| VAT_original_glrlm_RunEntropy1 | 0.09 (0.02-0.37) | 0.001 |
| VAT_original_glszm_GrayLevelNonUniformityNormalized1 | 5606.87 (0.12-270661365.71) | 0.041 |
| VAT_original_shape_SurfaceVolumeRatio0 | 1.76 (0.97-3.21) | 0.045 |
| delta_VAT_original_shape_Sphericity1 | 0.24 (0.06-1.02) | 0.042 |
Table 6 Summary of all final selected clinical, body composition analysis, and radiomic features across feature subsets 1 to 4
| Feature subset 1 | Feature subset 2 | Feature subset 3 | Feature subset 4 | |
| Clinical | clinical_T, clinical_N, clinical_M, ECOG | clinical_T, clinical_M | clinical_T, clinical_M | clinical_T, clinical_M |
| BOA | delta_SAT, TAT/SMI, sarco0 | |||
| Radiomics (pretreatment) | MUSCLE_original_shape_ | MUSCLE_original_shape_ | ||
| Radiomics (f/u) | MUSCLE_original_glszm_ | MUSCLE_glszm_LargeAreaEmphasis1, |
Table 7 Model performances across different input combinations for 1-year, 2-year, and 3-year survival prediction
| Input | Models | 1-year | 2-year | 3-year | ||||||
| AUC | Sensitivity | Specificity | AUC | Sensitivity | Specificity | AUC | Sensitivity | Specificity | ||
| Subset 1: No-radiomics | SVC | 0.691 | 0.46 | 0.83 | 0.73 | 0.70 | 0.66 | 0.64 | 0.73 | 0.51 |
| LR | 0.67 | 0.58 | 0.73 | 0.841 | 0.73 | 0.82 | 0.66 | 0.63 | 0.68 | |
| ETC | 0.66 | 0.50 | 0.78 | 0.77 | 0.65 | 0.78 | 0.71 | 0.88 | 0.45 | |
| Nomogram | 0.67 | 0.51 | 0.76 | 0.70 | 0.86 | 0.44 | 0.711 | 0.65 | 0.71 | |
| Subset 2: Pretreatment | SVC | 0.66 | 0.81 | 0.47 | 0.73 | 0.82 | 0.54 | 0.68 | 0.75 | 0.52 |
| LR | 0.65 | 0.67 | 0.56 | 0.771 | 0.70 | 0.70 | 0.761 | 0.67 | 0.80 | |
| ETC | 0.64 | 0.65 | 0.54 | 0.76 | 0.80 | 0.56 | 0.68 | 0.49 | 0.85 | |
| Nomogram | 0.711 | 0.77 | 0.61 | 0.69 | 0.74 | 0.54 | 0.69 | 0.82 | 0.47 | |
| Subset 3: Follow-up | SVC | 0.60 | 0.55 | 0.65 | 0.74 | 0.69 | 0.67 | 0.53 | 0.68 | 0.45 |
| LR | 0.61 | 0.62 | 0.60 | 0.811 | 0.71 | 0.80 | 0.53 | 0.58 | 0.59 | |
| ETC | 0.60 | 0.56 | 0.63 | 0.76 | 0.78 | 0.61 | 0.64 | 0.61 | 0.64 | |
| Nomogram | 0.701 | 0.73 | 0.59 | 0.71 | 0.71 | 0.64 | 0.701 | 0.75 | 0.61 | |
| Subset 4: Combination | SVC | 0.60 | 0.42 | 0.79 | 0.84 | 0.63 | 0.82 | 0.59 | 0.47 | 0.66 |
| LR | 0.61 | 0.80 | 0.36 | 0.911 | 0.81 | 0.88 | 0.55 | 0.68 | 0.54 | |
| ETC | 0.60 | 0.51 | 0.70 | 0.81 | 0.62 | 0.85 | 0.64 | 0.62 | 0.64 | |
| Nomogram | 0.731 | 0.85 | 0.52 | 0.73 | 0.64 | 0.69 | 0.741 | 0.72 | 0.67 | |
- Citation: Liu MC, Cheng YY, Lin SC, Lin CH, Chuang CY, Chen WH, Liao CH, Hsieh CH, Hsieh MF, Liu YJ. Machine learning survival prediction in esophageal cancer using radiomics and body composition from pretreatment and follow-up T12-level computed tomography. World J Gastrointest Oncol 2025; 17(12): 112873
- URL: https://www.wjgnet.com/1948-5204/full/v17/i12/112873.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i12.112873
