Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. Oct 15, 2025; 17(10): 111163
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.111163
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.111163
Table 1 Clinical and demographic characteristics of the two groups of patients, mean ± SD/n (%)
| Variables | Patients | |||
| Total (n = 514) | N group (n = 388) | D group (n = 126) | P value | |
| Preoperative variables | ||||
| Age, years | 63.5 ± 10.1 | 63.0 ± 10.1 | 65.2 ± 10.0 | 0.031 |
| Elderly | 23 (4.5) | 256 (66) | 100 (79.4) | 0.005 |
| Sex | 0.301 | |||
| Male | 385 (74.9) | 295 (76.0) | 90 (71.4) | |
| Female | 129 (25.1) | 93 (24.0) | 36 (28.6) | |
| Body mass index, kg/m2 | 22.6 ± 3.3 | 22.5 ± 3.4 | 22.8 ± 3.0 | 0.505 |
| ASA score | 0.320 | |||
| I | 58 (11.3) | 48 (12.4) | 10 (7.9) | |
| II | 343 (66.7) | 260 (67.0) | 83 (65.9) | |
| III | 113 (22.0) | 80 (20.6) | 33 (26.2) | |
| Hypertension | 136 (26.4) | 100 (25.8) | 36 (28.6) | 0.536 |
| Diabetes | 42 (8.1) | 30 (7.7) | 12 (9.5) | 0.524 |
| Chronic obstructive pulmonary disease | 7 (1.3) | 7 (1.8) | 0 (0) | 0.282 |
| Cardiovascular diseases | 43 (8.3) | 36 (9.3) | 7 (5.6) | 0.190 |
| Obesity (body mass index ≥ 30 kg/m2) | 6 (1.1) | 6 (1.5) | 0 (0) | 0.354 |
| Underweight (body mass index < 18.5 kg/m2) | 119 (23.1) | 88 (22.7) | 31 (24.6) | 0.657 |
| Smoking history | 245 (47.6) | 187 (48.2) | 58 (46.0) | 0.673 |
| Drinking history | 214 (41.6) | 163 (42.0) | 51 (40.5) | 0.762 |
| History of abdominal surgery | 44 (8.5) | 30 (7.7) | 14 (11.1) | 0.239 |
| Emergency | 34 (6.6) | 28 (7.2) | 6 (4.8) | 0.335 |
| Weight loss, kg, median (IQR) | 2.9 (0, 5.0) | 2.0 (0, 5.0) | 0 (0, 5.0) | 0.534 |
| Hospitalization duration, day | 4 (3, 7) | 4 (2, 7) | 4 (3, 7) | 0.497 |
| Total parenteral nutrition | 156 (30.3) | 124 (32.0) | 32 (25.4) | 0.164 |
| Hemoglobin concentration, g/L, median (IQR) | 123.0 (102.0, 138.0) | 124.0 (102.0, 139.0) | 120.5 (99.0, 135.8) | 0.230 |
| Hypoproteinemia (< 35 g/L) | 121 (23.5) | 93 (24.0) | 28 (22.2) | 0.688 |
| Absolute value of neutrophils, 109/L, median (IQR) | 3.0 (1.5, 4.5) | 3.0 (1.8, 4.7) | 2.7 (0.9, 4.0) | 0.032 |
| Absolute value of lymphocytes, 109/L, median (IQR) | 1.6 (1.2, 2.4) | 1.6 (1.2, 2.3) | 1.7 (1.2, 2.4) | 0.966 |
| Neutrophil to lymphocyte ratio, median (IQR) | 2.2 (1.3, 3.6) | 2.2 (1.3, 3.5) | 2.3 (1.1, 3.7) | 0.701 |
| White blood cell count, 109/L | 6.8 ± 3.2 | 6.7 ± 2.7 | 7.1 ± 4.3 | 0.329 |
| Blood glucose concentration, mmol/L | 6.0 ± 2.1 | 5.9 ± 1.9 | 6.3 ± 2.4 | 0.067 |
| Intraoperative and postoperative variables | ||||
| Length of incision, cm | 9.3 ± 4.8 | 9.1 ± 4.8 | 9.1 ± 4.9 | 0.005 |
| Infection | 23 (4.4) | 16 (4.1) | 7 (5.6) | 0.499 |
| Surgical scope | 0.158 | |||
| Complete gastrectomy | 128 (24.9) | 93 (24.0) | 35 (27.7) | |
| Partial gastrectomy | 250 (48.6) | 198 (51.0) | 52 (41.3) | |
| Multi organ combined surgery | 136 (26.5) | 97 (25.0) | 39 (31.0) | |
| Operation | 0.505 | |||
| Laparoscopic | 418 (81.4) | 313 (80.7) | 105 (83.3) | |
| Open surgery | 96 (18.6) | 75 (19.3) | 21 (16.7) | |
| Total input, mL, median (IQR) | 2900 (2500, 3500) | 2875 (2500, 3500) | 3000 (2500, 3500) | 0.479 |
| Bleeding, mL, median (IQR) | 100.0 (50.0, 150.0) | 65.0 (50.0, 150.0) | 100.0 (50.0, 187.5) | 0.243 |
| Urine output, mL, median (IQR) | 400 (250, 600) | 400 (250, 600) | 450 (300, 650) | 0.123 |
| Length of operation, hour | 4.3 ± 1.4 | 4.2 ± 1.4 | 4.6 ± 1.4 | 0.005 |
| Destination | 0.563 | |||
| Post anesthesia care unit | 181 (35.2) | 133 (34.3) | 48 (38.1) | |
| Ward | 330 (64.2) | 252 (64.9) | 78 (61.9) | |
| Intensive care unit | 3 (0.6) | 3 (0.8) | 0 (0) | |
| Duration of abdominal drainage, day | 12.9 ± 5.1 | 11.2 ± 3.8 | 18.0 ± 5.2 | < 0.001 |
| Duration of total parenteral nutrition, day, median (IQR) | 9.0 (7.0, 11.0) | 8.0 (6.0, 10.0) | 10.0 (7.0, 12.0) | 0.497 |
| C-reactive protein concentration, mg/L, median (IQR) | 46.5 (27.0, 78.3) | 47.5 (27.0, 76.5) | 45.1 (27.9, 79.9) | 0.891 |
| Blood glucose concentration, mmol/L | 8.1 ± 3.2 | 8.0 ± 3.1 | 8.4 ± 3.6 | 0.247 |
Table 2 Data after feature encoding
| Attribute name | Attribute value | Assignment |
| Sex | Male | 1 |
| Female | 0 | |
| Elderly (≥ 60 years) | Yes | 1 |
| No | 0 |
Table 3 Patient information the in training and validation sets, mean ± SD/n (%)
| Variables | Training set (n = 362) | Validation set (n = 152) | ||
| N group (n = 270) | D group (n = 92) | N group (n = 118) | D group (n = 34) | |
| Elderly (%) | 179 (66.3) | 72 (78.3) | 77 (65.3) | 28 (82.4) |
| Sex (%) | ||||
| Male | 205 (75.9) | 68 (73.9) | 80 (67.8) | 22 (64.7) |
| Female | 65 (24.1) | 24 (26.1) | 38 (32.2) | 12 (35.3) |
| Absolute value of lymphocytes, 109/L | 3.6 ± 2.6 | 3.1 ± 2.3 | 3.4 ± 2.6 | 2.7 ± 2.0 |
| White blood cell count, 109/L | 6.7 ± 2.8 | 7.1 ± 4.7 | 6.8 ± 2.6 | 6.9 ± 2.7 |
| Duration of abdominal drainage, day | 11.3 ± 3.7 | 17.8 ± 5.0 | 10.9 ± 3.9 | 18.5 ± 5.3 |
Table 4 Comparison of the three machine learning models
| Datasets | Prediction models | Precision | Accuracy | Recall | F1 index | Area under the receiver operating curve (95%CI) | P value1 | P value2 |
| Training set | Decision tree | 0.951 | 0.917 | 0.937 | 0.944 | 0.962 (0.944-0.979) | 4.00 × 10-37 | 0.4233 |
| Logistic regression | 0.848 | 0.823 | 0.930 | 0.887 | 0.924 (0.897-0.950) | 1.40 × 10-30 | < 0.0015 | |
| SVM | 0.861 | 0.845 | 0.944 | 0.901 | 0.749 (0.697-0.802) | 1.21 × 10-08 | < 0.0014 | |
| Validation set | Decision tree | 0.940 | 0.901 | 0.932 | 0.936 | 0.951 (0.920-0.979) | 2.72 × 10-21 | 0.0013 |
| Logistic regression | 0.869 | 0.855 | 0.957 | 0.911 | 0.937 (0.900-0.970) | 4.86 × 10-20 | < 0.0015 | |
| SVM | 0.890 | 0.875 | 0.958 | 0.922 | 0.773 (0.685-0.855) | 7.30 × 10-07 | < 0.0014 |
Table 5 Comparison of performance metrics under the clinical threshold corresponding to the maximized Youden index of the three machine learning models
| Datasets | Prediction models | Precision | Accuracy | Recall | F1 index | Youden index | Best threshold |
| Training set | Decision tree | 0.657 | 0.867 | 1.000 | 0.793 | 0.822 | 0.130 |
| Logistic regression | 0.641 | 0.856 | 0.989 | 0.778 | 0.800 | 0.192 | |
| SVM | 0.641 | 0.856 | 0.989 | 0.778 | 0.800 | 0.173 | |
| Validation set | Decision tree | 0.667 | 0.888 | 1.000 | 0.800 | 0.856 | 0.219 |
| Logistic regression | 0.611 | 0.855 | 0.971 | 0.750 | 0.793 | 0.168 | |
| SVM | 0.750 | 0.921 | 0.971 | 0.846 | 0.877 | 0.195 |
- Citation: An Y, Sun YG, Feng S, Wang YS, Chen YY, Jiang J. Constructing a prediction model for delayed wound healing after gastric cancer radical surgery based on three machine learning algorithms. World J Gastrointest Oncol 2025; 17(10): 111163
- URL: https://www.wjgnet.com/1948-5204/full/v17/i10/111163.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i10.111163
