Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. Oct 15, 2025; 17(10): 110671
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.110671
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.110671
Table 1 Clinical characteristics of all esophageal cancer patients
| Characteristics | Non-response group | Response group | P value |
| Age (year) | 60.38 ± 8.96 | 55.44 ± 7.99 | 0.347 |
| Gender, n (%) | 0.375 | ||
| Male | 78 (81.25) | 31 (86.11) | |
| Female | 18 (18.75) | 5 (13.89) | |
| Location, n (%) | 0.765 | ||
| Upper | 17 (17.71) | 4 (11.11) | |
| Middle | 46 (47.92) | 20 (55.56) | |
| Lower | 23 (23.95) | 9 (25.00) | |
| Middle and lower | 10 (10.42) | 3 (8.33) | |
| Degree of differentiation, n (%) | 0.388 | ||
| Well differentiated | 1 (1.04) | 1 (2.78) | |
| Moderately differentiated | 74 (77.08) | 29 (80.56) | |
| Poorly differentiated | 14 (14.59) | 5 (13.88) | |
| Medium to high differentiation | 1 (1.04) | 0 (0) | |
| Middle to low differentiation | 6 (6.25) | 1 (2.78) | |
| Length of tumor | 5.54 ± 1.76 | 5.43 ± 1.91 | 0.862 |
| CEA | 3.09 (1.78, 3.26) | 2.89 (1.74, 3.65) | 0.47 |
| SCCA | 2.40 (0.80, 3.00) | 1.70 (0.74, 1.86) | 0.859 |
Table 2 Performance of different classification algorithms in predicting neoadjuvant therapy efficacy in esophageal cancer
| Models | Task | AUC | 95%CI | Sensitivity | Specificity | Accuracy |
| LR | Train | 0.798 | 0.7127-0.8841 | 0.844 | 0.634 | 0.693 |
| LR | Test | 0.800 | 0.5144-1.0000 | 0.667 | 0.600 | 0.615 |
| SVM | Train | 0.735 | 0.6310-0.8393 | 0.781 | 0.598 | 0.649 |
| SVM | Test | 0.733 | 0.3511-1.0000 | 0.333 | 0.800 | 0.692 |
| KNN | Train | 0.848 | 0.7814-0.9148 | 0.375 | 0.915 | 0.763 |
| KNN | Test | 0.783 | 0.4851-1.0000 | 0.667 | 0.700 | 0.692 |
| RF | Train | 0.962 | 0.9321-0.9910 | 0.906 | 0.854 | 0.868 |
| RF | Test | 0.833 | 0.5562-1.0000 | 0.667 | 0.600 | 0.615 |
| ET | Train | 0.932 | 0.8832-0.9811 | 0.906 | 0.817 | 0.842 |
| ET | Test | 0.900 | 0.6801-1.0000 | 0.667 | 0.700 | 0.692 |
| XGBoost | Train | 1.000 | 1.0000-1.0000 | 0.969 | 1.000 | 0.991 |
| XGBoost | Test | 0.767 | 0.4999-1.0000 | 0.667 | 0.700 | 0.692 |
| LGBM | Train | 1.000 | 1.0000-1.0000 | 0.969 | 1.000 | 0.991 |
| LGBM | Test | 0.800 | 0.5507-1.0000 | 0.667 | 0.700 | 0.692 |
| AdaBoost | Train | 1.000 | 1.0000-1.0000 | 0.969 | 1.000 | 0.991 |
| AdaBoost | Test | 0.800 | 0.5203-1.0000 | 0.667 | 0.600 | 0.615 |
| MLP | Train | 0.808 | 0.7179-0.8987 | 0.781 | 0.805 | 0.798 |
| MLP | Test | 0.767 | 0.4938-1.0000 | 0.667 | 0.700 | 0.692 |
Table 3 Delong test for comparing area under the curves among classification algorithms
| Models | LR | SVM | KNN | RF | ET | XGBoost | LGBM | AdaBoost | MLP |
| LR | 0.405 | 0.900 | 0.480 | 0.194 | 0.794 | 1.000 | 1.000 | 0.820 | |
| SVM | 0.405 | 0.729 | 0.194 | 0.110 | 0.852 | 0.648 | 0.546 | 0.863 | |
| KNN | 0.900 | 0.729 | 0.637 | 0.095 | 0.893 | 0.895 | 0.859 | 0.873 | |
| RF | 0.480 | 0.194 | 0.637 | 0.230 | 0.582 | 0.710 | 0.626 | 0.648 | |
| ET | 0.194 | 0.110 | 0.095 | 0.230 | 0.230 | 0.275 | 0.160 | 0.246 | |
| XGBoost | 0.794 | 0.852 | 0.893 | 0.582 | 0.230 | 0.480 | 0.745 | 1.000 | |
| LGBM | 1.000 | 0.648 | 0.895 | 0.710 | 0.275 | 0.480 | 1.000 | 0.777 | |
| AdaBoost | 1.000 | 0.546 | 0.859 | 0.626 | 0.160 | 0.745 | 1.000 | 0.794 | |
| MLP | 0.820 | 0.820 | 0.873 | 0.648 | 0.246 | 1.000 | 0.777 | 0.794 |
- Citation: Yang RH, Fan WX, Zhong Y, Lin ZP, Chen JP, Jiang GH, Dai HY. Predicting esophageal cancer response to neoadjuvant therapy with magnetic resonance imaging radiomics. World J Gastrointest Oncol 2025; 17(10): 110671
- URL: https://www.wjgnet.com/1948-5204/full/v17/i10/110671.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i10.110671
