BPG is committed to discovery and dissemination of knowledge
Retrospective Study
Copyright ©The Author(s) 2025.
World J Gastrointest Oncol. Oct 15, 2025; 17(10): 110671
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.110671
Table 1 Clinical characteristics of all esophageal cancer patients
Characteristics
Non-response group
Response group
P value
Age (year)60.38 ± 8.9655.44 ± 7.990.347
Gender, n (%)0.375
    Male78 (81.25)31 (86.11)
    Female18 (18.75)5 (13.89)
Location, n (%)0.765
    Upper17 (17.71)4 (11.11)
    Middle46 (47.92)20 (55.56)
    Lower23 (23.95)9 (25.00)
    Middle and lower10 (10.42)3 (8.33)
Degree of differentiation, n (%)0.388
    Well differentiated1 (1.04)1 (2.78)
    Moderately differentiated74 (77.08)29 (80.56)
    Poorly differentiated14 (14.59)5 (13.88)
    Medium to high differentiation1 (1.04)0 (0)
    Middle to low differentiation6 (6.25)1 (2.78)
Length of tumor5.54 ± 1.765.43 ± 1.910.862
CEA3.09 (1.78, 3.26)2.89 (1.74, 3.65)0.47
SCCA2.40 (0.80, 3.00)1.70 (0.74, 1.86)0.859
Table 2 Performance of different classification algorithms in predicting neoadjuvant therapy efficacy in esophageal cancer
Models
Task
AUC
95%CI
Sensitivity
Specificity
Accuracy
LRTrain0.7980.7127-0.88410.8440.6340.693
LRTest0.8000.5144-1.00000.6670.6000.615
SVMTrain0.7350.6310-0.83930.7810.5980.649
SVMTest0.7330.3511-1.00000.3330.8000.692
KNNTrain0.8480.7814-0.91480.3750.9150.763
KNNTest0.7830.4851-1.00000.6670.7000.692
RFTrain0.9620.9321-0.99100.9060.8540.868
RFTest0.8330.5562-1.00000.6670.6000.615
ETTrain0.9320.8832-0.98110.9060.8170.842
ETTest0.9000.6801-1.00000.6670.7000.692
XGBoostTrain1.0001.0000-1.00000.9691.0000.991
XGBoostTest0.7670.4999-1.00000.6670.7000.692
LGBMTrain1.0001.0000-1.00000.9691.0000.991
LGBMTest0.8000.5507-1.00000.6670.7000.692
AdaBoostTrain1.0001.0000-1.00000.9691.0000.991
AdaBoostTest0.8000.5203-1.00000.6670.6000.615
MLPTrain0.8080.7179-0.89870.7810.8050.798
MLPTest0.7670.4938-1.00000.6670.7000.692
Table 3 Delong test for comparing area under the curves among classification algorithms
Models
LR
SVM
KNN
RF
ET
XGBoost
LGBM
AdaBoost
MLP
LR0.4050.9000.4800.1940.7941.0001.0000.820
SVM0.4050.7290.1940.1100.8520.6480.5460.863
KNN0.9000.7290.6370.0950.8930.8950.8590.873
RF0.4800.1940.6370.2300.5820.7100.6260.648
ET0.1940.1100.0950.2300.2300.2750.1600.246
XGBoost0.7940.8520.8930.5820.2300.4800.7451.000
LGBM1.0000.6480.8950.7100.2750.4801.0000.777
AdaBoost1.0000.5460.8590.6260.1600.7451.0000.794
MLP0.8200.8200.8730.6480.2461.0000.7770.794