Copyright
©The Author(s) 2026.
World J Gastrointest Oncol. Feb 15, 2026; 18(2): 113870
Published online Feb 15, 2026. doi: 10.4251/wjgo.v18.i2.113870
Published online Feb 15, 2026. doi: 10.4251/wjgo.v18.i2.113870
Figure 1 Efficiency-performance trade-offs in deep learning models for hepatocellular carcinoma.
A: Performance vs model parameters; B: Performance vs computational cost. CNN: Convolutional neural network; RNN: Recurrent neural network; AUC: Area under curve; GFLOPs: Giga floating point operations.
- Citation: Akbulut S, Colak C. Pioneering efficient deep learning architectures for enhanced hepatocellular carcinoma prediction and clinical translation. World J Gastrointest Oncol 2026; 18(2): 113870
- URL: https://www.wjgnet.com/1948-5204/full/v18/i2/113870.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v18.i2.113870
