Published online Oct 15, 2020. doi: 10.4251/wjgo.v12.i10.1091
Peer-review started: March 2, 2020
First decision: April 25, 2020
Revised: May 18, 2020
Accepted: May 27, 2020
Article in press: May 27, 2020
Published online: October 15, 2020
Processing time: 226 Days and 1.6 Hours
Liver cancer is the sixth most frequently occurring cancer in the world and the fourth most common cause of cancer mortality. The pathogenesis of liver cancer is closely associated with inflammation and immune response in the tumor microenvironment. New therapeutic agents for liver cancer, which can control inflammation and restore cellular immunity, are required. Curcumin (Cur) is a natural anti-inflammatory drug, and total ginsenosides (TG) are a commonly used immunoregulatory drug. Of note, both Cur and TG have been shown to exert anti-liver cancer effects.
To determine the synergistic immunomodulatory and anti-inflammatory effects of Cur combined with TG in a mouse model of subcutaneous liver cancer.
A subcutaneous liver cancer model was established in BALB/c mice by a subcutaneous injection of hepatoma cell line. Animals were treated with Cur (200 mg/kg per day), TG (104 mg/kg per day or 520 mg/kg per day), the combination of Cur (200 mg/kg per day) and TG (104 mg/kg per day or 520 mg/kg per day), or 5-fluorouracil combined with cisplatin as a positive control for 21 d. Tumor volume was measured and the protein expression of programmed cell death 1 and programmed cell death 1 ligand 1 (PD-L1), inflammatory indicators Toll like receptor 4 (TLR4) and nuclear factor-κB (NF-κB), and vascular growth-related factors nitric oxide synthases (iNOS) and matrix metalloproteinase 9 were analyzed by Western blot analysis. CD4+CD25+Foxp3+ regulatory T cells (Tregs) were counted by flow cytometry.
The combination therapy of Cur and TG significantly inhibited the growth of liver cancer, as compared to vehicle-treated animals, and TG showed dose dependence. Cur combined with TG-520 markedly decreased the protein expression of PD-L1 (P < 0.0001), while CD4+CD25+Foxp3+ Tregs regulated by the PD-L1 signaling pathway exhibited a positive correlation with PD-L1. Cur combined with TG-520 also inhibited the cascade action mediated by NF-κB (P < 0.0001), thus inhibiting the TLR4/NF-κB signalling pathway (P = 0.0088, P < 0.0001), which is associated with inflammation and acts on PD-L1. It also inhibited the NF-κB-MMP9 signalling pathway (P < 0.0001), which is associated with tumor angiogenesis.
Cur combined with TG regulates immune escape through the PD-L1 pathway and inhibits liver cancer growth through NF-κB-mediated inflammation and angiogenesis.
Core Tip: The occurrence and development of liver cancer can be driven by inflammation, and the imbalance of cell-mediated immune mechanism also plays an important role. Controlling inflammation and restoring cellular immunity are new targets for the treatment of liver cancer. Here, we combined curcumin, an effective drug that controls inflammation, with total ginsenosides, which enhance immune function. We confirmed that the two drugs had a synergistic anti-liver cancer effect in a mouse model of subcutaneous, and they played their roles mainly through programmed cell death 1 ligand 1 and NF-κB signaling pathway. These findings provide a new idea for combined drug therapy for liver cancer.