Published online Aug 8, 2015. doi: 10.4254/wjh.v7.i16.1987
Peer-review started: April 18, 2015
First decision: June 18, 2015
Revised: June 24, 2015
Accepted: July 23, 2015
Article in press: July 27, 2015
Published online: August 8, 2015
Processing time: 112 Days and 7.8 Hours
With the widespread of cross-sectional imaging, a growth of incidentally detected focal liver lesions (FLL) has been observed. A reliable detection and characterization of FLL is critical for optimal patient management. Maximizing accuracy of imaging in the context of FLL is paramount in avoiding unnecessary biopsies, which may result in post-procedural complications. A tremendous development of new imaging techniques has taken place during these last years. Nowadays, Magnetic resonance imaging (MRI) plays a key role in management of liver lesions, using a radiation-free technique and a safe contrast agent profile. MRI plays a key role in the non-invasive correct characterization of FLL. MRI is capable of providing comprehensive and highly accurate diagnostic information, with the additional advantage of lack of harmful ionizing radiation. These properties make MRI the mainstay for the noninvasive evaluation of focal liver lesions. In this paper we review the state-of-the-art MRI liver protocol, briefly discussing different sequence types, the unique characteristics of imaging non-cooperative patients and discuss the role of hepatocyte-specific contrast agents. A review of the imaging features of the most common benign and malignant FLL is presented, supplemented by a schematic representation of a simplistic practical approach on MRI.
Core tip: With the widespread of cross-sectional imaging, a growth of incidentally detected focal liver lesions (FLL) has been observed. A reliable detection and characterization of FLL is critical for optimal patient management. Magnetic resonance imaging (MRI) plays a key role in non-invasive characterization of FLL. The multiparametric ability of pre- and post-contrast sequences is an intrinsic advantage of MRI to reach an accurate diagnosis. New techniques such as diffusion-weighted sequences and hepatocyte-specific contrast agents are being currently used in clinical practice, which might further improve the detection and characterization of FLL.