Copyright
©The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Mar 26, 2016; 8(3): 106-117
Published online Mar 26, 2016. doi: 10.4252/wjsc.v8.i3.106
Published online Mar 26, 2016. doi: 10.4252/wjsc.v8.i3.106
Updates in the pathophysiological mechanisms of Parkinson’s disease: Emerging role of bone marrow mesenchymal stem cells
Hanaa H Ahmed, Emad F Eskandar, Hadeer A Aglan, Hormones Department, Medical Research Division, National Research Centre, Giza 12622, Egypt
Ahmed M Salem, Mohamed A Ghazy, Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 1156, Egypt
Hazem M Atta, Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Hazem M Atta, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Kasralainy, Cairo 11562, Egypt
Abdel Razik H Farrag, Pathology Department, Medical Research Division, National Research Centre, Giza 12622, Egypt
Neveen A Salem, Narcotics, Ergogenic aids and Poisons Department, Medical Research Division, National Research Centre, Giza 12622, Egypt
Author contributions: Ahmed HH designed and coordinated the research as well as wrote the paper; Salem AM analyzed the data; Atta HM performed the isolation and preparation steps of bone marrow mesenchymal stem cells from rats; Eskandar EF participated in the designation of the research; Farrag AH performed the immunohistochemical examination and histopathological investigations; Ghazy MA performed the molecular investigations; Salem NA and Aglan HA participated in the induction of Parkinson’s disease in rats and treatment as well as performed the biochemical measurements.
Institutional review board statement: The study was reviewed and approved by the National Research Centre Institutional Review Board.
Institutional animal care and use committee statement: All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the National Research Centre, protocol number: (09-200).
Conflict-of-interest statement: The authors declared no conflict of interest.
Data sharing statement: Technical appendix, statistical code, and dataset available from the corresponding author at hanaaomr@yahoo.com.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Hanaa H Ahmed, PhD, Professor of Biochemistry, Hormones Department, Medical Research Division, National Research Centre, 33 El-Bohouth Street, Dokki, Giza 12622, Egypt. hanaaomr@yahoo.com
Telephone: +20-2-33335966 Fax: +20-2-33370931
Received: September 12, 2015
Peer-review started: September 16, 2015
First decision: November 7, 2015
Revised: February 1, 2016
Accepted: February 23, 2016
Article in press: February 24, 2016
Published online: March 26, 2016
Processing time: 191 Days and 0.8 Hours
Peer-review started: September 16, 2015
First decision: November 7, 2015
Revised: February 1, 2016
Accepted: February 23, 2016
Article in press: February 24, 2016
Published online: March 26, 2016
Processing time: 191 Days and 0.8 Hours
Core Tip
Core tip: The current study was planned to clarify the mode of action of mesenchymal stem cells (MSCs) in targeting multiple systems implicated in the pathophysiology of Parkinson’s disease (PD) in the rat model. For this purpose, the MSCs were isolated from bone marrow (BM) of rat femur bone and PD was induced in ovariectomized rats by rotenone administration for 14 d. Our results provided clear evidences for the therapeutic role of BM-derived MSCs against PD pathophysiology through their immunomodulatory properties, anti-inflammatory and anti-apoptotic effects as well as neurotrophic and neurogenic potentials.