©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Jun 26, 2015; 7(5): 866-872
Published online Jun 26, 2015. doi: 10.4252/wjsc.v7.i5.866
Published online Jun 26, 2015. doi: 10.4252/wjsc.v7.i5.866
Hair follicle stem cells: In vitro and in vivo neural differentiation
Nowruz Najafzadeh, Maryam Dastan Imcheh, Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
Banafshe Esmaeilzade, Department of Anatomical Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 5756151819, Iran
Maryam Dastan Imcheh, Department of Biology, Faculty of Sciences, Urmia University, Urmia 5756151818, Iran
Author contributions: Najafzadeh N wrote the paper; Esmaeilzade B and Dastan Imcheh M reviewed and edited the manuscript.
Conflict-of-interest: The authors declare that there are no conflicts of interest.
Correspondence to: Nowruz Najafzadeh, PhD, Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran. n.najafzade@arums.ac.ir
Telephone: +98-453-3513776 Fax: +98-453-3513424
Received: November 28, 2014
Peer-review started: December 2, 2014
First decision: January 20, 2015
Revised: February 22, 2015
Accepted: April 1, 2015
Article in press: April 7, 2015
Published online: June 26, 2015
Processing time: 214 Days and 1.1 Hours
Peer-review started: December 2, 2014
First decision: January 20, 2015
Revised: February 22, 2015
Accepted: April 1, 2015
Article in press: April 7, 2015
Published online: June 26, 2015
Processing time: 214 Days and 1.1 Hours
Core Tip
Core tip: Hair follicle stem cells (HFSCs) can proliferate in vitro and retain the label for a long time. Various types of stem cells, including epidermal-neural crest stem cells, nestin-positive, keratin 15-negative cells, and CD34-positive cells have been demonstrated in hair follicles. HFSCs normally give rise to keratinocytes, sebocytes, and transient amplifying cells in vivo. In addition, these cells differentiate into ectodermal lineages including oligodendrocytes, astrocytes, and neurons. Neural cells derived from HFSCs can replace lost cells in neurodegenerative diseases. Their easy accessibility along with their potential for neural differentiation makes HFSCs an ideal stem cell source for treatment of neurodegenerative disorders.
