Copyright
©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Nov 26, 2014; 6(5): 571-578
Published online Nov 26, 2014. doi: 10.4252/wjsc.v6.i5.571
Published online Nov 26, 2014. doi: 10.4252/wjsc.v6.i5.571
Connexin mutant embryonic stem cells and human diseases
Kiyomasa Nishii, Yasushi Kobayashi, Department of Anatomy and Neurobiology, National Defense Medical College, Saitama 359-8513, Japan
Yosaburo Shibata, Fukuoka Prefectural University, Tagawa, Fukuoka 825-8585, Japan
Author contributions: All authors contributed to this paper.
Correspondence to: Kiyomasa Nishii, MD, PhD, Department of Anatomy and Neurobiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan. nishii@ndmc.ac.jp
Telephone: +81-4-29951478 Fax: +81-4-29965186
Received: August 13, 2014
Revised: September 11, 2014
Accepted: September 16, 2014
Published online: November 26, 2014
Processing time: 46 Days and 2.2 Hours
Revised: September 11, 2014
Accepted: September 16, 2014
Published online: November 26, 2014
Processing time: 46 Days and 2.2 Hours
Core Tip
Core tip: Numerous gap junction-encoding connexin (Cx) mutant mice have been established as models of human diseases. Although these analyses have facilitated current understanding of native Cx functions and the pathogenesis of related diseases, care must be taken when extrapolating findings from mice to humans, and vice versa, because there can be striking diversity in tissue organization and Cx expression patterns between these species. Recently, the use of human induced pluripotent stem cells (iPSCs) allowed further direct approaches for studying human diseases. According to the studies using mutant mouse embryonic stem cells, Cx mutant human iPSCs may become a useful model.