Yang HC, Zhang M, Wu R, Zheng HQ, Zhang LY, Luo J, Li LL, Hu XQ. C-C chemokine receptor type 2-overexpressing exosomes alleviated experimental post-stroke cognitive impairment by enhancing microglia/macrophage M2 polarization. World J Stem Cells 2020; 12(2): 152-167 [PMID: 32184939 DOI: 10.4252/wjsc.v12.i2.152]
Corresponding Author of This Article
Xi-Quan Hu, MD, PhD, Chief Physician, Professor, Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510000, Guangdong Province, China. sysu_hu@163.com
Research Domain of This Article
Rehabilitation
Article-Type of This Article
Basic Study
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Stem Cells. Feb 26, 2020; 12(2): 152-167 Published online Feb 26, 2020. doi: 10.4252/wjsc.v12.i2.152
C-C chemokine receptor type 2-overexpressing exosomes alleviated experimental post-stroke cognitive impairment by enhancing microglia/macrophage M2 polarization
Huai-Chun Yang, Min Zhang, Rui Wu, Hai-Qing Zheng, Li-Ying Zhang, Jing Luo, Li-Li Li, Xi-Quan Hu
Huai-Chun Yang, Rui Wu, Hai-Qing Zheng, Li-Ying Zhang, Jing Luo, Li-Li Li, Xi-Quan Hu, Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
Min Zhang, Department of Andrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
Author contributions: Hu XH, Yang HC, and Zhang M conceived and designed the experiments. Yang HC and Zhang M performed the experiments. Yang HC, Zhang M and Wu R acquired, analyzed and interpreted the data. Hu XH, Yang HC, and Zhang M wrote the manuscript. All authors have read and revised the final manuscript and approved it for publication.
Supported bythe National Natural Science Foundation of China, No. 81871847 and No. 81672261.
Institutional review board statement: The study was reviewed and approved by the Institutional Animal Ethics Committee of Life Sciences School, Sun Yat-sen University.
Institutional animal care and use committee statement: Animal studies were reviewed and approved by the Institutional Animal Ethics Committee of Life Sciences School, Sun Yat-sen University.
Conflict-of-interest statement: The authors declare no conflicts of interest.
Data sharing statement: The data used to support the findings of this study are available from the corresponding author upon request.
ARRIVE guidelines statement: The manuscript has been prepared and revised according to the ARRIVE guidelines.
Corresponding author: Xi-Quan Hu, MD, PhD, Chief Physician, Professor, Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510000, Guangdong Province, China. sysu_hu@163.com
Received: October 22, 2019 Peer-review started: October 22, 2019 First decision: November 18, 2019 Revised: December 27, 2019 Accepted: January 19, 2020 Article in press: January 19, 2020 Published online: February 26, 2020 Processing time: 128 Days and 3.2 Hours
Core Tip
Core tip: Exosomes have been reported to possess the therapeutic benefit comparable to the therapeutic effects of mesenchymal stromal cells. However, the effects of exosomes derived from human umbilical cord mesenchymal stem cells (ExoCtrl) on post-stroke cognitive impairment (PSCI) have rarely been reported. Moreover, whether exosomes derived from C-C chemokine receptor type 2 (CCR2)-overexpressing human umbilical cord mesenchymal stem cells (ExoCCR2) have better therapeutic effects on PSCI and the possible mechanisms underlying these effects remained unclear. This study provides new insights into the use of genetically modified exosomes for PSCI treatment, offering new ideas for the clinical application of exosome-based therapies for PSCI.