Published online Mar 26, 2024. doi: 10.4252/wjsc.v16.i3.305
Peer-review started: December 13, 2023
First decision: January 24, 2024
Revised: January 31, 2024
Accepted: February 28, 2024
Article in press: February 28, 2024
Published online: March 26, 2024
Processing time: 102 Days and 13 Hours
Mesenchymal stem cells (MSCs) have been extensively applied in preclinical and clinical research in regenerative medicine. Their differentiation and function are modulated by various exogenous signals, which provide potential strategies for researchers to explore appropriate exogenous signals to regulate the functions and differentiation of stem cells. Nanosecond pulsed electric fields (nsPEFs) represent nanosecond-duration, high-strength electric fields to significantly influence cell phenotypes and regulate stem cell differentiation through multiple pathways. Thus, we used transcriptomics analysis to analyze messenger RNA (mRNA), long noncoding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA) expression to identify changes in gene expression following treatment with nsPEFs.
The differentiation and function of MSCs are regulated by nsPEFs. However, the mechanism, especially changes in gene expression after nsPEFs treatment, remains unclear.
To reveal gene expression in MSCs pretreated with nsPEFs and explore the potential gene regulatory mechanism.
We used whole transcriptome sequencing to investigate the effects of nsPEFs on MSC transcriptome. Five pulses of nsPEFs (100 ns at 10 kV/cm, 1 Hz) were applied to pretreat MSCs. Total RNA was isolated after pretreatment of MSCs; each transcript was normalized by fragments per kilobase per million. Fold change and difference significance were used to screen the differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to identify gene function, and the results were verified by quantitative polymerase chain reaction.
The top 20 differentially expressed lncRNAs and mRNAs were revealed. Two hundred and sixty-three DEGs were identified in the PRJNA931816 dataset, of which 92 were upregulated and 171 were significantly downregulated, respectively. DEGs were mainly enriched in epithelial cell proliferation, osteoblast differentiation, mesenchymal cell differentiation, nuclear division, and wound healing. As for cellular components, DEGs were mainly involved in condensed chromosome, chromosomal region, actin cytoskeleton, and the kinetochore. With regard to molecular functions, DEGs are mainly involved in glycosaminoglycan binding, integrin binding, nuclear steroid receptor activity, cytoskeletal motor activity, and steroid binding. Quantitative real-time polymerase chain reaction was used to verify the seven upregulated mRNAs, Aldh3a1, Cenpf, Kif20b, Ereg, Nek2, Nr3c2, and Scin, and six downregulated mRNAs, Actg2, Asic3, Crybat4, Nog, Stxbp5 L, and Tubb2b.
Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs, 2 miRNAs, and 65 lncRNAs. We showed that nsPEFs may affect stem cells via several signaling pathways and involve vesicular transport, calcium ion transport, the cytoskeleton, and cell differentiation.
This study is the first to investigate the expression profile of the whole transcriptome in nsPEFs-treated stem cells. The findings provide a certain basis for the application of nsPEFs in stem cell differentiation and tissue regeneration.