Published online Oct 26, 2017. doi: 10.4252/wjsc.v9.i10.169
Peer-review started: July 14, 2017
First decision: August 7, 2017
Revised: August 14, 2017
Accepted: September 3, 2017
Article in press: September 4, 2017
Published online: October 26, 2017
Processing time: 105 Days and 15.2 Hours
Tumors consist of a mixture of heterogeneous cell types. Cancer stem cells (CSCs) are a minor sub-population within the bulk cancer fraction which has been found to reconstitute and propagate the disease and to be frequently resistant to chemotherapy, irradiation, cytotoxic drugs and probably also against immune attack. CSCs are considered as the seeds of tumor recurrence, driving force of tumorigenesis and metastases. This underlines the urgent need for innovative methods to identify and target CSCs. However, the role and existence of CSCs in therapy resistance and cancer recurrence remains a topic of intense debate. The underlying biological properties of the tumor stem cells are extremely dependent on numerous signals, and the targeted inhibition of these stem cell signaling pathways is one of the promising approaches of the new antitumor therapy approaches. This perspective review article summarizes the novel methods of tracing CSCs and discusses the hallmarks of CSC identification influenced by the microenvironment or by having imperfect detection markers. In addition, explains the known molecular mechanisms of therapy resistance in CSCs as reliable and clinically predictive markers that could enable the use of new targeted antitumor therapy in the sense of personalized medicine.
Core tip: Cancer stem cells (CSCs) are small subpopulation of the tumor that can survive from conventional treatment, scape from the immune system and can cause recurrence of cancer disease. Therefore, any attempt in detection and selective therapeutic targeting of CSCs will ultimately lead to better cancer treatments and can play an important role in reducing the cancer related mortalities. This review highlights the trends and approaches in CSC tracing, isolating, characterizing and targeting, which are key strategies for a novel personalized molecular cancer therapy.