Published online May 26, 2015. doi: 10.4252/wjsc.v7.i4.711
Peer-review started: August 28, 2014
First decision: September 4, 2014
Revised: October 2, 2014
Accepted: February 4, 2015
Article in press: February 9, 2015
Published online: May 26, 2015
Processing time: 277 Days and 18.3 Hours
The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients’ psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This field is attractive not only to academic researchers but also to the companies that own almost half of the patents in this field.
Core tip: Loss of hair follicles caused by injuries or pathologies affects the patients’ psychological well-being and endangers inherent functions of the skin. Different experimental strategies and approaches to obtain mature hair follicles have been designed based upon current knowledge of the epithelial and dermal cells involved in embryonic hair generation and adult hair cycling, and in the epithelial-mesenchymal interactions among them. This review summarizes the current advances in hair follicle neogenesis and regeneration, with emphasis on those involving neogenesis of hair follicles in adults from isolated cells and tissue engineering as well as an analysis on patent trends in this field.