Published online Jul 26, 2022. doi: 10.4252/wjsc.v14.i7.490
Peer-review started: March 18, 2022
First decision: April 25, 2022
Revised: May 31, 2022
Accepted: July 8, 2022
Article in press: July 8, 2022
Published online: July 26, 2022
Processing time: 129 Days and 17.1 Hours
Stem cell fate determination is one of the central questions in stem cell biology, and although its regulation has been studied at genomic and proteomic levels, a variety of biological activities in cells occur at the metabolic level. Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination. While metabolism is considered to play a biological regulatory role as an energy source, recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms, including histone modification, DNA methylation, and microRNAs. Additionally, the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription. The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites. In the present review, we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination, and discuss the potential preventive and therapeutic strategies via targeting metabolites.
Core Tip: Stem cell fate can be regulated by metabolites. Recent studies have suggested that there is a nexus between metabolism and epigenetics, as several metabolites could function as cofactors and substrates in epigenetic mechanisms. We review many basic and preclinical studies, and the results support this view. This finding may provide a clue to further studies on the co-effects of metabolism and epigenetics in cell fate determination.
