Published online Oct 26, 2021. doi: 10.4252/wjsc.v13.i10.1382
Peer-review started: March 15, 2021
First decision: May 6, 2021
Revised: May 16, 2021
Accepted: September 10, 2021
Article in press: September 10, 2021
Published online: October 26, 2021
Processing time: 224 Days and 15.4 Hours
In this editorial, we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells. In particular, we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways. To this end, the narrative starts from the dawn of the first studies on animal electricity, reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements. We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis, regeneration, or even malignant transformation. We conclude that there is now mounting evidence for the existence of a Morphogenetic Code, and that deci
Core Tip: The capability of biological systems to create dynamically evolving shapes, up to large-scale anatomy, raises a number of fundamental questions that are only partially addressed in terms of molecular signaling. Physical energies, including mechanical and electromagnetic waves, afford substantial control of somatic and stem cell fate under normal and pathological conditions. This editorial focuses on the remarkable role of bioelectricity in shape generation, and maintenance, up to growth regulatory patterning that lead to the specification of tissues/organs and of the whole individual. Implications of bioelectrical signaling in tissue regeneration and in the control of malignant transformation are also discussed.