Published online Apr 26, 2020. doi: 10.4252/wjsc.v12.i4.251
Peer-review started: December 30, 2019
First decision: February 20, 2020
Revised: March 16, 2020
Accepted: March 22, 2020
Article in press: March 22, 2020
Published online: April 26, 2020
Processing time: 118 Days and 17.8 Hours
Periodontal diseases are infectious diseases that are characterized by progressive damage to dental support tissue. The major goal of periodontal therapy is to regenerate the periodontium destroyed by periodontal diseases. Human periodontal ligament (PDL) tissue possesses periodontal regenerative properties, and periodontal ligament stem cells (PDLSCs) with the capacity for osteogenic differentiation show strong potential in clinical application for periodontium repair and regeneration. Noncoding RNAs (ncRNAs), which include a substantial portion of poly-A tail mature RNAs, are considered “transcriptional noise.” Recent studies show that ncRNAs play a major role in PDLSC differentiation; therefore, exploring how ncRNAs participate in the osteogenic differentiation of PDLSCs may help to elucidate the underlying mechanism of the osteogenic differentiation of PDLSCs and further shed light on the potential of stem cell transplantation for periodontium regeneration. In this review paper, we discuss the history of PDLSC research and highlight the regulatory mechanism of ncRNAs in the osteogenic differentiation of PDLSCs.
Core tip: Periodontal ligament stem cells (PDLSCs) are widely utilized in therapeutic applications for periodontium repair and regeneration in periodontal disease treatment. However, more evidence is required to elucidate what determines and regulates the multilineage differentiation potential of PDLSCs. Noncoding RNAs (ncRNAs) are essential elements in gene expression and signal transduction, being involved in diverse cellular processes and diseases. Concerning ncRNAs that may collectively or individually alter the osteogenic differentiation of PDLSCs, this review is based on current studies and aims to summarize the most significant ncRNAs identified in the osteogenic differentiation of PDLSCs.