Published online Jul 26, 2019. doi: 10.4252/wjsc.v11.i7.375
Peer-review started: May 10, 2019
First decision: June 5, 2019
Revised: June 12, 2019
Accepted: June 20, 2019
Article in press: June 29, 2019
Published online: July 26, 2019
Processing time: 80 Days and 20.5 Hours
The capability of human pluripotent stem cell (hPSC) lines to propagate indefinitely and differentiate into derivatives of three embryonic germ layers makes these cells be powerful tools for basic scientific research and promising agents for translational medicine. However, variations in differentiation tendency and efficiency as well as pluripotency maintenance necessitate the selection of hPSC lines for the intended applications to save time and cost. To screen the qualified cell lines and exclude problematic cell lines, their pluripotency must be confirmed initially by traditional methods such as teratoma formation or by high-throughput gene expression profiling assay. Additionally, their differentiation potential, particularly the lineage-specific differentiation propensities of hPSC lines, should be predicted in an early stage. As a complement to the teratoma assay, RNA sequencing data provide a quantitative estimate of the differentiation ability of hPSCs in vivo. Moreover, multiple scorecards have been developed based on selected gene sets for predicting the differentiation potential into three germ layers or the desired cell type many days before terminal differentiation. For clinical application of hPSCs, the malignant potential of the cells must also be evaluated. A combination of histologic examination of teratoma with quantitation of gene expression data derived from teratoma tissue provides safety-related predictive information by detecting immature teratomas, malignancy marker expression, and other parameters. Although various prediction methods are available, distinct limitations remain such as the discordance of results between different assays and requirement of a long time and high labor and cost, restricting their wide applications in routine studies. Therefore, simpler and more rapid detection assays with high specificity and sensitivity that can be used to monitor the status of hPSCs at any time and fewer targeted markers that are more specific for a given desired cell type are urgently needed.
Core tip: To save time and costs in basic research and clinical application, it is necessary to predict the differentiation potential of human pluripotent stem cell (hPSC) lines. Multiple methods are available for pluripotency screening, lineage-specific differentiation propensity prediction, and malignancy potential detection, which can be used to select hPSCs. However, simpler and quicker methods using fewer specific targeted markers for the desired cell type are urgently required for routine work.