Copyright
©The Author(s) 2026.
World J Gastroenterol. Feb 7, 2026; 32(5): 113592
Published online Feb 7, 2026. doi: 10.3748/wjg.v32.i5.113592
Published online Feb 7, 2026. doi: 10.3748/wjg.v32.i5.113592
Table 1 Characteristics of deep learning networks for diagnosis of hepatocellular carcinoma from computed tomography images, mean ± SD
| Ref. | Method | Base network | Type of CT | Train set | Test set | Validation set | ACC | Sen | Spe | AUC | DICE |
| Wang et al[21] | HCCNet and NoduleNet | ResNet | NCCT/CECT | 7512 | 385/556 | 0.81/0.81 | 0.78/0.89 | 0.84/0.74 | 0.89/0.88 | ||
| Ling et al[22] | 3D ResNet | ResNet | CECT | 480 or 481 | 120 or 121 | 0.92 (0.87, 0.96) | 0.95 (0.90, 1) | 0.88 (0.82, 0.91) | 0.96 (0.93, 0.98) | ||
| Guo et al[23] | ALARM | 3D ResNet50 and nnUNet | CECT | 924 | 231/703 | 0.92/0.94 | 0.89/0.93 | 0.90/0.92 | |||
| Kim et al[24] | MASK R-NN | ResNet101 and UNet and FPN and RPN | CECT | 568 | 589 | 0.85 | 0.96 | ||||
| Shan et al[25] | 3D ResUNet | ResUNet | CECT | 0.88 | |||||||
| Zossou et al[26] | RA-UNet | UNet | CT | 4536 slices | 315 slices | 1134 slices | 0.94 | 0.94 | 0.88 | ||
| Chen et al[27] | SED | UNet and DenseUNet | CT | 4000 slices | 300 slices | 800 slices | 0.99 | 0.95 | 0.75 | ||
| Gao et al[28] | STIC | CNN and gated RNN | CECT | 499 | 113/111 | 0.93 ± 0.04 | 0.93 ± 0.10 | 0.94 ± 0.04 | 0.99 ± 0.01 | ||
| Rocha et al[29] | CNN | CNN | CECT | 317 | 79 | 0.95 | 0.92 ± 0.01 | 0.99 ± 0.00 | |||
| Khan et al[30] | Multi-modal deep neural network | AlexNet | CECT | 248 | 75 | 75 | 0.96 | > 0.94 | > 0.98 | 0.83 | |
| Balagourouchetty et al[31] | FCNet | GoogleNet | CECT | 444 | 190 | 0.97 | 0.995 |
Table 2 Characteristics of deep learning networks for segmentation of hepatocellular carcinoma from computed tomography images, mean ± SD
| Ref. | Method | Combine | Type of CT | Train set | Test set | Validation set | VOE (%) | RVD (%) | ASD (mm) | RMSD (mm) | DICE (%) |
| Nakai et al[32] | CNN | CECT | 493 | 62 | 62 | ||||||
| Shah et al[33] | MDL-CNN | Cascade | CECT | 2948 slice | 1264 slice | 9.8 | 8.2 | 95.7 | |||
| Ouhmich et al[34] | UNet | Cascade | CECT | Cross-validation (1:6) | 68.1 ± 23.2 | ||||||
| Khan et al[35] | RMS-UNet | Residual multi-scale | CT | 101 | 21 | 21 | 14.95 ± 9.40 | -0.7 ± 1.3 | 3.06 ± 3.13 | 1.60 ± 0.72 | 91.92 ± 0.05 |
| Gong et al[36] | UNet-DRLSEIC | DRLSEIC | CT | 110 | 40 | 95.2 ± 1.7 | |||||
| Chen et al[37] | RDA-UNet | ResNet DenseNet and UNet | CT | 15611 slice | 3903 slice | 87.03 | |||||
| Li et al[38] | H-DenseUnNet | DenseNet and UNet | CECT | 131 | 70 | 20 | 11.68 ± 4.33 | -0.01 ± 0.05 | 0.58 ± 0.46 | 1.87 ± 2.33 | 93.7 ± 2 |
| Wang et al[39] | MAD-Unet | Multi-scale attention and deep supervision | CECT | 116 | 15 | 6.83 ± 2.31 | 0.34 ± 0.19 | 1.03 ± 0.37 | 3.74 ± 3.58 | 97.27 ± 1.22 | |
| Lee et al[40] | HFS-Net | DenseUNet and UNet | DNCT | 298 | 179 | 118 | 82.8 | ||||
| Ou et al[41] | ResTransUNet | Transformer and UNet | CECT | 8.04 ± 6.8 | -0.07 ± 9.5 | 95.35 ± 4.5 | |||||
| Jiang et al[42] | Swin-UNet | SFTB and LCAB | CECT | 104 | 26 | 37.38 | -0.1577 | 5.1433 | 76.14 | ||
| Clinton Atabansi et al[43] | ICT-Net | Transformer and convolution | CECT | 1789 | 225 | 223 | 90.91 | ||||
| d’Albenzi et al[44] | DEDC-Net | ResNet and VGG-19 | CECT | 101 | 15 | 15 | 12.17 ± 12.67 | 46.1 ± 27.4 | |||
| Singh et al[45] | FasNet | ResNet-50 and VGG-16 | CECT | 87.66 | |||||||
| Guo et al[46] | FCN and ACM | FCN and ACM | CT | 42 | 16 | 19 | 1.6 ± 0.5 | 3.5 ± 1.2 | 95.8 ± 1.4 | ||
| Zhang et al[47] | DeepRecS | RMP-Net and CGBS-Net | CECT | 139 | 46 | 46 | 15.88 ± 3.79 | 0.32 ± 6.45 | 0.47 ± 0.45 | 1.57 ± 1.46 | 91.32 ± 2.30 |
| Balasubramanian et al[48] | APESTNet and Mask R-CNN | APESTNet and Mask R-CNN | CECT | 121 | 10 | 20 | 5.37 ± 3.27 | -1.08 ± 2.06 | 1.85 ± 0.30 | 97.31 ± 1.49 | |
| Liu et al[49] | S2DANet | FSMF and MAHA and GMCA | CECT | 92 | 26 | 13 | 43.95 | 0.3861 | 10.80 | 69.51 | |
Table 3 Characteristics of deep learning networks for treatment response of hepatocellular carcinoma from computed tomography images
| Ref. | Therapy | Base network | Combine model | Type of CT | Train set | Test set | Validation set | CR and PR (%) | SD and PD (%) | AUC (%) | ACC (%) | ||
| Peng et al[50] | TACE | ResNet50 | DL | CECT | 562 | 89/138 | 41.58/42.03 | 58.42/57.97 | 96 (94-97); 97 (96-98) | 85.1/82.8 | |||
| Peng et al[51] | TACE | DL | R | DL | CECT | 139 | 171 | 60.82 | 39.18 | 99.4 (98.7-100) | |||
| Sun et al[52] | TACE | ResNet18 | R | C | DL | CECT | 299 | 100 | 43 | 57 | 0.91 (0.85-0.97) | ||
| Lin et al[53] | TACE | ResNet50 | ML (SVC) | DL | CECT | 42 | 26 | 92 (90-94) (SVC) | 81 (80-82) | ||||
| Liao et al[54] | CLICI | ResNet18 | DL | CECT | 72 | 48 | 27.1 | 72.9 | 80.2 (78.0-82.4) | 72.5 | |||
| Lin et al[55] | ICI | ResNet18 | R | C | DL | CECT | 153 | 50 | 70 | 30 | 0.88 (0.77-0.99) | ||
| Yin et al[56] | TACE-HAIC and ICI and TKI | RseNet50 | R | C | DL | CECT | 92 | 30 | 50 | 24 | 76 | 0.85 | 79.1 |
Table 4 Characteristics of deep learning networks for prognosis of hepatocellular carcinoma from computed tomography images, mean ± SD
| Ref. | Therapy | Predict aim | Base network | Combine model | Type of CT | Train set | Test set | Validation set | C-index | ACC | AUC | ||
| Wang et al[57] | SR | Recurrence | ResNet18 | C | DL | CECT | Ten-fold cross-validation (167) | 0.81 ± 0.01 | 0.87 ± 0.03 | ||||
| Lv et al[58] | SR | Recurrence | ResNet50 | C | R | DL | CECT | 156 | 68 | 0.83 (0.80-0.87) | |||
| Zhang et al[59] | SR | Recurrence | VGG19 | C | DL | CECT | 162 | 70/91 | 0.714 | 0.80 | |||
| Gao et al[60] | LT or SR | Recurrence | DSViT | DL | CECT | 5-fold cross validation (204) | 0.76 ± 0.06 | 0.80 ± 0.04 | |||||
| Yao et al[61] | SR | Recurrence | DenseNet | DL | CECT | 180 | 122 | 0.78 (0.76-0.79) | 0.80 (2 years) | ||||
| Hui et al[62] | SR | Recurrence | ResNet | C | DL | CECT | 536 | 560 | 153 | 0.86 (0.78-0.92) | |||
| Sun et al[63] | TACE | Survival | ResNet101 | C | DL | CECT | 241 | 60 | 0.88 (0.80-0.96) | 0.93 | 0.96 (0.88-1.00) | ||
| Dai et al[64] | TACE | Survival | ResNeXt | C | R | DL | CECT | 115 | 165 | 30 | 0.80 | 0.89 | |
| Wei et al[65] | SBRT | Survival | CNN-survNet | C | R | DL | CECT | 100 | 33 | 34 | 0.65 (0.64-0.68) | ||
| Chen et al[66] | SBRT | Survival | ResNet50 | C | R | DL | CECT | Nested cross-validation | 0.86 (0.80-0.93) | ||||
| Ren et al[67] | TACE and TKI | Survival | Resnet50 | DL | CECT | 10-fold cross validation (103) | 0.92 | 0.94 | |||||
| Xia et al[68] | IT | Survival | EfficientNet | C | DL | CECT | 129 | 46 | 32 | 0.75 (0.66-0.84) | 0.839 | ||
| Xu et al[69] | IT | Survival | EfficientNet; Semisupervised; CNN-Transformer | C | DL | CECT | 520 | 209 | 130 | 0.74 (0.70-0.78) | 0.84 (0.80-0.88) (2 years) | ||
| Lee et al[70] | M | Survival | DenseNet121 | C | DL | CECT | 507 | 146 | 0.821 ± 0.022 | 0.89 ± 0.02 | |||
- Citation: Chen Y, Zhang Q, Zhang MY. Deep learning techniques for using computed tomography imaging for hepatocellular carcinoma diagnosis, treatment and prognosis. World J Gastroenterol 2026; 32(5): 113592
- URL: https://www.wjgnet.com/1007-9327/full/v32/i5/113592.htm
- DOI: https://dx.doi.org/10.3748/wjg.v32.i5.113592
