BPG is committed to discovery and dissemination of knowledge
Review
Copyright ©The Author(s) 2026.
World J Gastroenterol. Feb 7, 2026; 32(5): 113592
Published online Feb 7, 2026. doi: 10.3748/wjg.v32.i5.113592
Table 1 Characteristics of deep learning networks for diagnosis of hepatocellular carcinoma from computed tomography images, mean ± SD
Ref.
Method
Base network
Type of CT
Train set
Test set
Validation set
ACC
Sen
Spe
AUC
DICE
Wang et al[21]HCCNet and NoduleNetResNetNCCT/CECT7512385/5560.81/0.810.78/0.890.84/0.740.89/0.88
Ling et al[22]3D ResNetResNetCECT480 or 481120 or 1210.92 (0.87, 0.96)0.95 (0.90, 1)0.88 (0.82, 0.91)0.96 (0.93, 0.98)
Guo et al[23]ALARM3D ResNet50 and nnUNetCECT924231/7030.92/0.940.89/0.930.90/0.92
Kim et al[24]MASK R-NNResNet101 and UNet and FPN and RPNCECT5685890.850.96
Shan et al[25]3D ResUNetResUNetCECT0.88
Zossou et al[26]RA-UNetUNetCT4536 slices315 slices1134 slices0.940.940.88
Chen et al[27]SEDUNet and DenseUNetCT4000 slices300 slices800 slices0.990.950.75
Gao et al[28]STICCNN and gated RNNCECT499113/1110.93 ± 0.040.93 ± 0.100.94 ± 0.040.99 ± 0.01
Rocha et al[29]CNNCNNCECT317790.950.92 ± 0.010.99 ± 0.00
Khan et al[30]Multi-modal deep neural networkAlexNetCECT24875750.96> 0.94> 0.980.83
Balagourouchetty et al[31]FCNetGoogleNetCECT4441900.970.995
Table 2 Characteristics of deep learning networks for segmentation of hepatocellular carcinoma from computed tomography images, mean ± SD
Ref.
Method
Combine
Type of CT
Train set
Test set
Validation set
VOE (%)
RVD (%)
ASD (mm)
RMSD (mm)
DICE (%)
Nakai et al[32]CNNCECT4936262
Shah et al[33]MDL-CNNCascadeCECT2948 slice1264 slice9.88.295.7
Ouhmich et al[34]UNetCascadeCECTCross-validation (1:6)68.1 ± 23.2
Khan et al[35]RMS-UNetResidual multi-scaleCT101212114.95 ± 9.40-0.7 ± 1.33.06 ± 3.131.60 ± 0.7291.92 ± 0.05
Gong et al[36]UNet-DRLSEICDRLSEICCT1104095.2 ± 1.7
Chen et al[37]RDA-UNetResNet DenseNet and UNetCT15611 slice3903 slice87.03
Li et al[38]H-DenseUnNet DenseNet and UNetCECT131702011.68 ± 4.33-0.01 ± 0.050.58 ± 0.461.87 ± 2.3393.7 ± 2
Wang et al[39]MAD-UnetMulti-scale attention and deep supervisionCECT116156.83 ± 2.310.34 ± 0.191.03 ± 0.373.74 ± 3.5897.27 ± 1.22
Lee et al[40]HFS-Net DenseUNet and UNetDNCT29817911882.8
Ou et al[41]ResTransUNetTransformer and UNetCECT8.04 ± 6.8-0.07 ± 9.595.35 ± 4.5
Jiang et al[42]Swin-UNetSFTB and LCABCECT1042637.38-0.15775.143376.14
Clinton Atabansi et al[43]ICT-NetTransformer and convolutionCECT178922522390.91
d’Albenzi et al[44] DEDC-NetResNet and VGG-19CECT101151512.17 ± 12.6746.1 ± 27.4
Singh et al[45]FasNetResNet-50 and VGG-16CECT87.66
Guo et al[46]FCN and ACMFCN and ACMCT4216191.6 ± 0.53.5 ± 1.295.8 ± 1.4
Zhang et al[47]DeepRecSRMP-Net and CGBS-NetCECT139464615.88 ± 3.790.32 ± 6.450.47 ± 0.451.57 ± 1.4691.32 ± 2.30
Balasubramanian et al[48]APESTNet and Mask R-CNNAPESTNet and Mask R-CNNCECT12110205.37 ± 3.27-1.08 ± 2.061.85 ± 0.3097.31 ± 1.49
Liu et al[49]S2DANetFSMF and MAHA and GMCACECT92261343.950.386110.8069.51
Table 3 Characteristics of deep learning networks for treatment response of hepatocellular carcinoma from computed tomography images
Ref.
Therapy
Base network
Combine model
Type of CT
Train set
Test set
Validation set
CR and PR (%)
SD and PD (%)
AUC (%)
ACC (%)
Peng et al[50]TACEResNet50DLCECT56289/13841.58/42.0358.42/57.9796 (94-97); 97 (96-98)85.1/82.8
Peng et al[51]TACEDLRDLCECT13917160.8239.1899.4 (98.7-100)
Sun et al[52]TACEResNet18RCDLCECT29910043570.91 (0.85-0.97)
Lin et al[53]TACEResNet50ML (SVC)DLCECT422692 (90-94) (SVC)81 (80-82)
Liao et al[54]CLICIResNet18DLCECT724827.172.980.2 (78.0-82.4)72.5
Lin et al[55]ICIResNet18RCDLCECT1535070300.88 (0.77-0.99)
Yin et al[56]TACE-HAIC and ICI and TKIRseNet50RCDLCECT92305024760.8579.1
Table 4 Characteristics of deep learning networks for prognosis of hepatocellular carcinoma from computed tomography images, mean ± SD
Ref.
Therapy
Predict aim
Base network
Combine model
Type of CT
Train set
Test set
Validation set
C-index
ACC
AUC
Wang et al[57]SRRecurrence ResNet18CDLCECTTen-fold cross-validation (167)0.81 ± 0.010.87 ± 0.03
Lv et al[58]SRRecurrence ResNet50CRDLCECT156680.83 (0.80-0.87)
Zhang et al[59]SRRecurrenceVGG19CDLCECT16270/910.7140.80
Gao et al[60]LT or SRRecurrence DSViTDLCECT5-fold cross validation (204)0.76 ± 0.060.80 ± 0.04
Yao et al[61]SRRecurrence DenseNetDLCECT1801220.78 (0.76-0.79)0.80 (2 years)
Hui et al[62]SRRecurrence ResNetCDLCECT5365601530.86 (0.78-0.92)
Sun et al[63]TACESurvival ResNet101CDLCECT241600.88 (0.80-0.96)0.930.96 (0.88-1.00)
Dai et al[64]TACESurvivalResNeXtCRDLCECT115165300.800.89
Wei et al[65]SBRTSurvival CNN-survNetCRDLCECT10033340.65 (0.64-0.68)
Chen et al[66]SBRTSurvivalResNet50CRDLCECTNested cross-validation0.86 (0.80-0.93)
Ren et al[67]TACE and TKISurvivalResnet50DLCECT10-fold cross validation (103)0.920.94
Xia et al[68]ITSurvival EfficientNetCDLCECT12946320.75 (0.66-0.84)0.839
Xu et al[69]ITSurvival EfficientNet; Semisupervised; CNN-TransformerCDLCECT5202091300.74 (0.70-0.78)0.84 (0.80-0.88) (2 years)
Lee et al[70]MSurvivalDenseNet121 CDLCECT5071460.821 ± 0.0220.89 ± 0.02