Review
Copyright
©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Nov 28, 2025; 31(44): 111160
Published online Nov 28, 2025. doi: 10.3748/wjg.v31.i44.111160
Table 1 Summary of artificial intelligence studies on the detection and characterization of Barrett’s epithelium and associated neoplasia[
8 ,
29 ,
30 ,
33 ,
34 ,
37 ,
39 - 42 ,
45 ]
Ref. Purpose Design Training set Test set IEE AI model Performance de Groof et al [39 ] Real-time Det + Ch of early BE neoplasia Prospective study 1247 i 297 i WLI Hybrid: ResNet-UNet Acc: 89%; Se: 90%; Sp: 88% de Groof et al [40 ] Real-time Det + Ch of early BE neoplasia Prospective pilot study 1544 i 144 i WLI Hybrid: ResNet-UNet Acc: 90%; Se 91%; Sp: 89% Hashimoto et al [41 ] Distinguish dysplastic from nondysplastic BE Prospective pilot study 1374 i 458 i WLI; NBI Inception-ResNet-v2 Acc: 95%; Se: 96%; Sp: 94% Ali et al [33 ] BE risk stratification Prospective pilot study 10000 i 194 v WLI; NBI ResNet-50; DeepLabv3 + Acc: 98% Hussein et al [45 ] Det and delineation of BE dysplasia Retrospective study 148936 v 276 v WLI; i-scan ResNet-101 Se: 91%; Sp: 79%; AUC: 0.93 Abdelrahim et al [37 ] Det and localization of BE neoplasia Prospective multicenter trial 1090171 i + v 471 i; 75 v WLI VGG16; SegNet I: Acc/Se/Sp: 95%; v: Acc: 92%; Se: 95%; Sp: 91% Tsai et al [30 ] Det of BE Retrospective study 771 i 160 i NBI EfficientNetV2B2 Acc: 94%; Se: 94%; Sp: 94% Xin et al [8 ] Det of early BE neoplasia Retrospective multicenter 14046 i 400 i; 188 v EfficientNet-Lite1; MobileNetV2; DeepLabv3 + I: Se: 88%; Sp: 90%; v: Se: 79%; Sp: 94% Meinikheim et al [34 ] AI impact on nonexp BE neoplasia Det Multicenter RCT 51273 i 96 v WLI; NBI; Chromo DeepLabv3; ResNet-50 Se: 70% to 78% w/AI; Sp: 67% to 73% w/AI Jukema et al [42 ] AI vs exp/nonexp in BE neoplasia Det Prospective 3468 i 161 i; 161 v NBI EfficientNet-Lite1 Se: 84% to 96% w/AI; Sp: 90% to 98% w/AI Jong et al [29 ] Ensure AI reliability in BE neoplasia Det Retrospective real word experience 1102 i; 12011 v 117 i WLI; NBI Hybrid: ResNet-50-vision transformer Se: 85% (high-quality I); 62% (mod); 47% (low)
Table 2 Summary of artificial intelligence studies on the detection and characterization of premalignant and early esophageal squamous cell carcinoma[
49 - 54 ,
66 ,
67 ,
70 ]
Ref. Purpose Design Training set Test set IEE AI model Performance Horie et al [67 ] Det of early ESCC Retrospective 8428 i 1118 i WLI; NBI SSD Acc/Se: 98%; NPV: 95%; PPV: 40% Ohmori et al [70 ] Det of early ESCC Retrospective 11283 non-ME i; 11279 ME i 523 non-ME i; 204 ME i WLI; NBI; BLI SSD Non-ME Acc: 79%; Se: 95%; Sp: 69%; ME: Acc: 77%; Se: 98%; Sp: 56% Fukuda et al [66 ] AI vs exp in early ESCC Det and Ch Retrospective 17274 i 144 v NBI; BLI SSD Det: Acc: 63%; Se: 91%; Sp: 51%; Ch: Acc: 88%; Se: 86%; Sp: 89% Yang et al [52 ] AI vs exp in Det of early ESCC Retrospective 22994 i 222 i; 104 v WLI; NBI; BLI YOLOv3; ResNet-v2 Acc: 99%; Se: 100%; Sp: 99% Yuan et al [51 ] Prediction of ID in early ESCC Retrospective multicenter 7094 i 1589 i NBI HRNet; OCRNet Acc: 91%; ID prediction: 74% Tani et al [50 ] Real-time Det of early ESCC Prospective single center trial 25048 i 237 i WLI; NBI ResNet-101 Acc: 81%; Se: 68%; Sp: 83% Li et al [49 ] Det of early ESCC and precancerous lesions RCT 26543 i 3117 i WLI; NBI ENDOANGEL-ELD Acc: 98%; Se: 90%; Sp: 98% Ma et al [54 ] Det + optical biopsy for early ESCC Prospective 25056 i 2442 i; 187 v WLI; pCLE iCLE inception-ResNet-v2 Acc: 98%; Se: 95%; Sp: 99% Aoyama et al [53 ] AI vs exp/nonexp in early ESCC Det Prospective 280 v 115 v NBI YOLOv3 Acc: 77%; Se: 76%; Sp: 79%
Table 3 Summary of artificial intelligence studies on the detection and characterization of gastric premalignant conditions[
81 ,
83 - 90 ,
92 ,
94 - 100 ]
Ref. Purpose Design Training set Test set IEE AI model Performance Zhang et al [92 ] Real-time Det of gastric polyps RCT 708 i 50 i WLI SSD-GPNet mAP: 90%; PDR by > 10% Zhang et al [99 ] Det of AG Retrospective 3829 i 1641 i WLI; i-scan CNN-CAG Acc: 94%; Se: 95%; Sp: 94% Xu et al [85 ] AI vs exp/nonexp in Det of GPMC Retrospective multicenter 5198 i 1052 i; 98 v ME-NBI; ME-BLI ENDOANGEL AG: Acc: 86% (i); 88% (v); GIM: Acc: 86% (i); 90% (v) Lin et al [90 ] Det of AG/GIM Retrospective multicenter 2193 i 273 i WLI TResNet AG: Acc: 96%; AUC: 0.98; Se: 96%; Sp: 96%; GIM: Acc: 98%; AUC: 0.99; Se: 98%; Sp: 97% Watanabe et al [100 ] Det of gastric indefinite for dysplasia lesions Retrospective 2961 i 248 i WLI SSD + miR148a DNA methylation AUC: 0.93 (exp) > 0.83 (AI + miR148a) > 0.59 (trainees) Kodaka et al [95 ] AG Det and OLGA staging in patients w/Helicobacter pylori infection Retrospective 11497 i 7724 i WLI ResNet-50 AUC: 0.75 (AI + Kyoto) > 0.67 (AI + OLGA) > 0.66 (AI alone) Zhao and Chi[98 ] Severity classification of AGAI vs endoscopists Prospective 2922 i 268 v NBI UNet (Increase) DR of mod AG (16% vs 8%) and severe AG (7% vs 3%); (decrease) unnecessary Bx Zhao et al [89 ] Det of AGAI vs endoscopists Prospective case-control 4175 i 676 v NBI UNet Acc: 91% vs 72%; Se: 84% vs 63%; Sp: 97% vs 82%; AUC: 0.91 vs 0.74 Yang et al [81 ] Det of AG/GIM Retrospective 21420 i 5355 i WLI; LCI SE-ResNet AG: Acc: 97%; Se: 99%; Sp: 95%; GIM: Acc: 99%; Se: 99%; Sp: 99% Li et al [96 ] Severity classification of GIM Retrospective 837 i 278 i NBI; LCI CDCN Acc: 84% Shi et al [88 ] Det of AG Retrospective 6216 i 600 i; 118 v WLI GAM-EfficientNet i: Acc: 94%; Se: 93%; Sp: 94%; v: Acc: 92%; Se: 96%; Sp: 89% Iwaya et al [87 ] Det of GIM and OLGIM staging Retrospective 5753 i 1150 i HE slides ResNet-50 Se: 98%; Sp: 95%; OLGIM stage III/IV classified in 18% Fang et al [86 ] AI vs pathologists in Det and grading of AG/GIM Prospective multicenter 1745 i 545 i Pathology slides GasMIL (Increase) pathologists’ performance (AUC: 0.95 vs 0.88) Tao et al [97 ] AG Det and risk stratification vs exp Retrospective 5856 i 869 i; 119 v WLI UNet ++ ResNet-50 ENDOANGEL (Increase) Se vs exp i: 93% vs 77%; v: 95% vs 86% Niu et al [94 ] GIM grading and OLGIM staging Retrospective multicenter 470 i 333 i ME-NBI Faster R-CNN Pred high-risk stage Acc: 84% Zou et al [83 ] Det of Helicobacter pylori infection AI vs endoscopists Multicenter RCT 7377 i 2080 i WLI EfficientNet Acc: 93% vs 76%; Se: 92% vs 79%; Sp: 93% vs 75% Xu et al [84 ] AI vs exp/nonexp in Det of AG/GIM Single center RCT NA 1968 v WLI ENDOANGEL (Increase) DR of AG: 23% vs 17%; (Increase) DR of GIM: 14% vs 9%
Table 4 Summary of artificial intelligence studies on the detection and characterization of early gastric cancer[
101 - 108 ,
110 ,
112 - 117 ,
119 ,
122 ]
Ref. Purpose Design Training set Test set IEE AI model Performance Zhu et al [122 ] ID prediction of EGC Retrospective 790 i 203 i WLI ResNet-50 Acc: 89%; Se: 76%; Sp: 96%; AUC: 0.94 Horiuchi et al [112 ] AI vs exp in EGC Det Retrospective 2570 i 174 v ME-NBI GoogLeNet Acc: 85%; Se: 95%; Sp: 71%; AUC: 0.87 Wu et al [108 ] Det of EGC Multicenter RCT NA 1050 v WLI ENDOANGEL Acc: 85%; Se: 100%; Sp: 84% Wu et al [107 ] Det of EGC RCT NA 1812 v WLI ENDOANGEL-LD (Decrease) miss rate (AI 6% vs endoscopists 27% RR = 0.22) Wu et al [117 ] AI vs exp in ID and DS of EGC Prospective multicenter 1131 i 100 v ME-NBI ENDOANGEL ID: Acc: 79% vs 64%; DS: Acc: 71% vs 64% Wu et al [116 ] Real time Det of EGC Prospective single center trial 9824 i 2010 v WLI ENDOANGEL-LD Acc: 92%; Se: 92%; Sp: 92%; PPV: 25%; NPV: 100% Ueyama et al [103 ] Det of EGC Retrospective 5574 i 2300 i ME-NBI ResNet-50 Acc: 99%; Se: 99%; Sp: 98% He et al [115 ] Det of EGC Retrospective multicenter 4667 i 4702 i; 187 v ME-NBI ENDOANGEL-ME Acc: 90%; Se: 93%; Sp: 94% Li et al [110 ] AI vs exp in EGC Det Retrospective 1630 i 267 i; 77 v ME-NBI ENDOANGEL-LA i: Acc: 89%; Se: 86%; Sp: 92%; v: Acc: 87%; Se: 84%; Sp: 88% Tang et al [114 ] Det of EGC Retrospective multicenter 13151 i 1577 i; 20 v NBI YOLOv3 Acc: 93%; AUC: 0.95 Jin et al [113 ] Det of EGC AI vs exp Prospective 5708 i 1425 i; 10 v WLI; NBI Mask R-CNN Acc: 90%; Se: 91%; Sp: 89% Gong et al [106 ] Real-time Det and ID prediction of EGC RCT 5017 i 2524 v WLI CDSS DR: 96%; ID Acc: 86%; lesion class: Acc: 82% Lee et al [101 ] EGC pathological Ch Retrospective 4336 i; 153 v 436 i; 89 v WLI ENAD CAD-G Acc: UH: 90%; SMI: 88%; LVI: 88%; LNM: 93% Chang et al [119 ] Classification of EGC Retrospective real-world data 21918 i 6785 i; 296 v WLI ENAD CAD-G i: Acc: EGC: 82%; dysplasia: 88%; v: Acc: EGC: 88%; dysplasia: 91% Zhao et al [102 ] Det of EGC LCI vs WLI Retrospective 9021 i 116 v WLI; LCI CADe (Increase) Se: LCI: 94% vs WLI: 79%; Sp: 93% in both Lee et al [101 ] Det of EGC Retrospective 30000 i 500 i WLI CADe (ALPHAON® ) Acc: 88%; Se: 93%; Sp: 87%; AUC: 0.96 Soong et al [105 ] Raman spectroscopy for EGC risk strat RCT NA 25 v WLI SPECTRA IMDx™ Acc: 100%; Se: 80%; Sp: 92% Feng et al [104 ] AI vs exp/nonexp in EGC Det Prospective 12000 i 1289 i; 130 v WLI DCNN Se: 97%; Sp: 89%; AUC: 0.93
Table 5 Summary of artificial intelligence studies on the detection of polyps and protruding lesions by video capsule endoscopy or small bowel endoscopy[
135 ,
138 - 140 ,
213 - 221 ]
Ref. Endoscopy type Study design Training set Test set AI model Performance Barbosa et al [135 ] VCE Retrospective 104 tumors, 100 normal 700 tumors, 2300 normal CNN Se: 94%; Sp: 93% Li and Meng[213 ] VCE Retrospective 540 tumors, 540 normal 60 tumors, 60 normal ML (SVM) Acc: 84%; Se: 82%; Sp: 8% Constantinescu et al [138 ] VCE Prospective 54 videos 90 images (32 polyps, 58 normal) ANN Acc: 98%; Se: 94%; Sp: 91% Liu et al [214 ] VCE Retrospective 1800 (105 patients, 89 videos) 89 videos (15 tumors, 74 normal) ML (SVM) Se: 98%; Sp: 97% Faghih Dinevari et al [215 ] VCE Retrospective 300 tumors, 300 normal 100 tumors, 100 normal ML (SVM) Acc: 94%; Se: 94%; Sp: 93% Yuan and Meng[216 ] VCE Retrospective 1000 polyps, 3000 normal 200 tumors, 600 normal DL Acc: 98% Ding et al [217 ] VCE Retrospective 158, 235 113, 268, 334 CNN Se: PPA: 99.9%; PLA: 99.9%; Sp: PPA and PLA: 100% Saito et al [218 ] VCE Retrospective 30, 584 17507 (7507 protruding lesions) CNN Se: 91%; Sp: 80% Xie et al [219 ] VCE Retrospective 148, 357, 922 146, 956, 145 CNN Se: 99% Cardoso et al [139 ] Enteroscopy Retrospective 6340 507 protruding lesions, 1078 normal CNN Acc: 97%; Se: 97%; Sp: 97% Inoue et al [220 ] EGD Retrospective 531 1080 CNN Se: 95%; Sp: 87% Ding et al [221 ] VCE Retrospective 280, 426 240 videos CNN Acc: 81%; Se: 96%; Sp: 98% Zhu et al [140 ] DBE Retrospective 8222 3148 CNN Det model: Se: 92%; Sp: 93%; Class model: Se: 80%-93%; Acc: 86%
Table 6 Summary of retrospective and prospective studies on computer aided detection for detecting colorectal polyps[
150 ,
222 - 229 ]
Ref. Study design Number Country Outcomes Park et al [222 ] Retrospective ex vivo 562 images United States Se: 86%; Sp: 85% Billah et al [223 ] Retrospective ex vivo 14000 images Bangladesh Se: 99%; Sp: 99% Lequan et al [224 ] Retrospective ex vivo 38 videos China Se: 71%; PPV: 88% Zhang et al [225 ] Retrospective ex vivo 2442 images China Se: 98%; PPV: 99%; Acc: 86% Misawa et al [226 ] Retrospective ex vivo 546 videos Japan Per-frame Se: 90%; Sp: 63%; Acc: 76%; Per-polyp Se: 94% Urban et al [150 ] Retrospective ex vivo 63559 images, 40 videos United States Se: 90%; Acc: 96% Yamada et al [227 ] Retrospective ex vivo 144823 video images Japan Se: 97%; Sp: 99% Klare et al [228 ] Prospective in vivo 55 colonoscopies Germany Per-polyp Se: 75%; ADR: 29%; PDR: 51% (31% and 56% in endoscopist) Ozawa et al [229 ] Ex vivo 23495 images Japan Se: 92%; PPV: 93%; Acc: 85%
Table 7 Summary of randomized controlled trials on computer aided detection for the detection of colorectal polyps[
151 - 159 ,
166 ,
175 - 178 ,
230 - 235 ]
Ref. Study design Number of patients Country Outcomes (AI vs control) Wang et al [151 ] Single center RCT 1058 China ADR: 29% vs 20% Wang et al [156 ] Single center RCT (double blind) 962 China ADR: 34% vs 28% Gong et al [157 ] Single center RCT 704 China ADR: 16% vs 8% Su et al [158 ] Single center RCT 659 China ADR: 29% vs 17% Liu et al [159 ] RCT 1026 China ADR: 39% vs 23% Wang et al [175 ] Tandem RCT 369 China AMR: 14% vs 40% Repici et al [152 ] Multicenter RCT 685 Italy ADR: 55% vs 40% Kamba et al [176 ] Tandem RCT 358 Japan AMR: 14% vs 37% Glissen Brown et al [177 ] Multicenter tandem RCT 223 United States AMR: 20% vs 31% Repici et al [153 ] RCT 660 Italy, Switzerland ADR: 53% vs 45% Wallace et al [178 ] Tandem RCT 240 Italy, United Kingdom, United States AMR: 16% vs 32% Shaukat et al [166 ] RCT 1359 United States APC: 1 vs 0.8 Xu et al [230 ] Multicenter RCT 3059 China ADR: 40% vs 32% Gimeno-García et al [231 ] Single center RCT 370 Spain ADR: 55% vs 41% Nakashima et al [154 ] Single center RCT 415 Japan ADR: 59% vs 48% Karsenti et al [232 ] Single center RCT 2592 France ADR: 38% vs 34% Lau et al [155 ] Single center RCT 766 China ADR: 58% vs 45% Maas et al [233 ] Multicenter RCT 916 Germany, Netherlands, United States, Israel ADR: AI 37% vs 30% Thiruvengadam et al [234 ] Single center RCT 1100 United States ADR: 43% vs 34% Park et al [235 ] Multicenter RCT 805 Korea ADR: 35% vs 28%
Table 8 Summary of retrospective studies on computer-aided diagnosis for characterization of colorectal polyps[
185 ,
188 - 192 ,
195 ,
196 ,
229 ,
236 - 238 ]
Ref. Country AI system Number WLI/IEE Primary outcomes Results Tischendorf et al [236 ] Germany SVM 209 polyps Magnifying NBI Adenomas vs non adenomas Se: 90%; Sp: 70%; Acc: 85% Takemura et al [237 ] Japan SVM 1519 polyps, 371 images Magnifying NBI Neoplastic vs non neoplastic Se: 97%; Sp: 97%; Acc: 97% Misawa et al [195 ] Japan EndoBRAIN 1179 images Endocytoscopy, NBI Prediction of histology Se: 84%; Sp: 97%; Acc: 90%; PPV: 98%; NPV: 82% Komeda et al [188 ] Japan CNN 1800 images, 10 videos WLI Adenomas vs non adenomas Acc: 75% Byrne et al [185 ] Canada DCNN 117000 images, 388 videos NBI Adenomas vs non adenomas (DP) Se: 98%; Sp: 83%; PPV: 90%; NPV: 97%; Acc: 94% Chen et al [238 ] China DCNN 2441 images NBI Neoplastic vs hyperplastic (DP) Se: 96%; Sp: 78%; PPV: 89%; NPV: 90%; Acc: 90% Sánchez-Montes et al [189 ] Spain ML 225 polyps HD WLI Adenomas vs non adenomas (DP) Se: 92%; NPV: 91%; Acc: 90%; DP: NPV: 96%; Acc: 87% Song et al [190 ] Korea ENAD 12480 images, 451 polyps NBI Adenomas vs SSLs Se: 82% vs 84%; Sp: 93% vs 88%; Acc: 81% vs 82% Kudo et al [196 ] Japan EndoBRAIN-EYE 69142 images Endocytoscopy, NBI Neoplastic vs non neoplastic Se: 96%; Sp: 94%; PPV: 96%; NPV: 94%; Acc: 96% Zachariah et al [192 ] United States CAD-EYE 5912 images WLI, NBI Diminutive adenomas vs SSLs/hyperplastic polyps Se: 96%; Sp: 90%; PPV: 94%; NPV: 93%; Acc: 94% Jin et al [191 ] Korea DCNN 2450 polyps NBI Adenomas vs non adenomas (DP) Se: 83%; Sp: 91%; Acc: 87% Ozawa et al [229 ] Japan DCNN (SSD) 27508 images WLI, NBI Adenomas vs non adenomas (DP) WLI: NPV: 85%; NBI: NPV: 91%
Table 9 Summary of prospective studies on computer-aided diagnosis for the characterization of colorectal polyps[
194 ,
200 ,
201 ,
208 ,
209 ,
239 - 243 ]
Ref. Country AI system Number WLI/IEE Primary outcomes Results Gross et al [239 ] Germany SVM 434 small polyps (< 10 mm) Magnifying NBI Adenomas vs non adenomas (small polyps) Se: 95%; Sp: 90%; PPV: 93%; NPV: 92%; Acc: 93% Kominami et al [240 ] Japan SVM 1262 polyps, 118 images Magnifying NBI Adenomas vs non adenomas (small polyps) Se: 93%; Sp: 95%; PPV: 95%; NPV: 93%; Acc: 97% Mori et al [194 ] Japan EndoBRAIN 61952 images, 466 polyps Endocytoscopy, NBI Adenomas vs non adenomas (DP) Se: 95%; Sp: 92%; PPV: 96%; NPV: 96%; Acc: 98% Barua et al [208 ] Norway, United Kingdom, Japan EndoBRAIN 892 polyps WLI, NBI, magnification Neoplastic vs non neoplastic polyps (DP) Se: 90%; Sp: 86% Hassan et al [242 ] Italy GI genius 544 polyps NBI, BLI Adenomas vs non adenomas (DP) NPV: 98%; Se: 82%; Sp: 93%; Acc: 92% Minegishi et al [200 ] Japan EndoBRAIN 395 polyps NBI Adenomas vs non adenomas (DP) NPV: 94%; Se: 94%; Sp: 63%; Acc: 86% Rondonotti et al [209 ] Italy CAD EYE 596 polyps WLI Adenomas vs non adenomas (DP) NPV: 91%; Se: 89%; Sp: 88%; Acc: 88% Li et al [241 ] Singapore (multicenter) CAD EYE 661 polyps WLI Neoplastic vs non neoplastic polyps Se: 62%; Acc: 72% Hassan et al [242 ] Italy CAD EYE; GI genius (head-to-head comparison) 319 polyps WLI, BLI Adenomas vs non adenomas (DP) NPV: 97% vs 98%; Se: 82% vs 86%; Sp: 92% vs 94% Houwen et al [201 ] Netherlands (multicenter) + Spain (1 center) POLAR 423 polyps NBI Neoplastic (adenomas and SSLs) vs non neoplastic Se: 89%; Sp: 38%; Acc: 79% Rex et al [243 ] United States (multicenter) GI genius 2695 polyps WLI, NBI Adenomas vs non adenomas Se: 91%; Sp: 65%