BPG is committed to discovery and dissemination of knowledge
Review
Copyright ©The Author(s) 2025.
World J Gastroenterol. Nov 28, 2025; 31(44): 111160
Published online Nov 28, 2025. doi: 10.3748/wjg.v31.i44.111160
Table 1 Summary of artificial intelligence studies on the detection and characterization of Barrett’s epithelium and associated neoplasia[8,29,30,33,34,37,39-42,45]
Ref.
Purpose
Design
Training set
Test set
IEE
AI model
Performance
de Groof et al[39]Real-time Det + Ch of early BE neoplasiaProspective study1247 i297 iWLIHybrid: ResNet-UNetAcc: 89%; Se: 90%; Sp: 88%
de Groof et al[40]Real-time Det + Ch of early BE neoplasiaProspective pilot study1544 i144 iWLIHybrid: ResNet-UNetAcc: 90%; Se 91%; Sp: 89%
Hashimoto et al[41]Distinguish dysplastic from nondysplastic BEProspective pilot study1374 i458 iWLI; NBIInception-ResNet-v2Acc: 95%; Se: 96%; Sp: 94%
Ali et al[33]BE risk stratificationProspective pilot study10000 i194 vWLI; NBIResNet-50; DeepLabv3 +Acc: 98%
Hussein et al[45]Det and delineation of BE dysplasiaRetrospective study148936 v276 vWLI; i-scanResNet-101Se: 91%; Sp: 79%; AUC: 0.93
Abdelrahim et al[37]Det and localization of BE neoplasiaProspective multicenter trial1090171 i + v471 i; 75 vWLIVGG16; SegNetI: Acc/Se/Sp: 95%; v: Acc: 92%; Se: 95%; Sp: 91%
Tsai et al[30]Det of BERetrospective study771 i160 iNBIEfficientNetV2B2Acc: 94%; Se: 94%; Sp: 94%
Xin et al[8]Det of early BE neoplasiaRetrospective multicenter14046 i400 i; 188 vEfficientNet-Lite1; MobileNetV2; DeepLabv3 +I: Se: 88%; Sp: 90%; v: Se: 79%; Sp: 94%
Meinikheim et al[34]AI impact on nonexp BE neoplasia DetMulticenter RCT51273 i96 vWLI; NBI; ChromoDeepLabv3; ResNet-50Se: 70% to 78% w/AI; Sp: 67% to 73% w/AI
Jukema et al[42]AI vs exp/nonexp in BE neoplasia DetProspective3468 i161 i; 161 vNBIEfficientNet-Lite1Se: 84% to 96% w/AI; Sp: 90% to 98% w/AI
Jong et al[29]Ensure AI reliability in BE neoplasia DetRetrospective real word experience1102 i; 12011 v117 iWLI; NBIHybrid: ResNet-50-vision transformerSe: 85% (high-quality I); 62% (mod); 47% (low)
Table 2 Summary of artificial intelligence studies on the detection and characterization of premalignant and early esophageal squamous cell carcinoma[49-54,66,67,70]
Ref.
Purpose
Design
Training set
Test set
IEE
AI model
Performance
Horie et al[67]Det of early ESCCRetrospective8428 i1118 iWLI; NBISSDAcc/Se: 98%; NPV: 95%; PPV: 40%
Ohmori et al[70]Det of early ESCCRetrospective11283 non-ME i; 11279 ME i523 non-ME i; 204 ME iWLI; NBI; BLISSDNon-ME Acc: 79%; Se: 95%; Sp: 69%; ME: Acc: 77%; Se: 98%; Sp: 56%
Fukuda et al[66]AI vs exp in early ESCC Det and ChRetrospective17274 i144 vNBI; BLISSDDet: Acc: 63%; Se: 91%; Sp: 51%; Ch: Acc: 88%; Se: 86%; Sp: 89%
Yang et al[52]AI vs exp in Det of early ESCCRetrospective22994 i222 i; 104 vWLI; NBI; BLIYOLOv3; ResNet-v2Acc: 99%; Se: 100%; Sp: 99%
Yuan et al[51]Prediction of ID in early ESCCRetrospective multicenter7094 i1589 iNBIHRNet; OCRNetAcc: 91%; ID prediction: 74%
Tani et al[50]Real-time Det of early ESCCProspective single center trial25048 i237 iWLI; NBIResNet-101Acc: 81%; Se: 68%; Sp: 83%
Li et al[49]Det of early ESCC and precancerous lesionsRCT26543 i3117 iWLI; NBIENDOANGEL-ELDAcc: 98%; Se: 90%; Sp: 98%
Ma et al[54]Det + optical biopsy for early ESCCProspective25056 i2442 i; 187 vWLI; pCLEiCLE inception-ResNet-v2Acc: 98%; Se: 95%; Sp: 99%
Aoyama et al[53]AI vs exp/nonexp in early ESCC DetProspective280 v115 vNBIYOLOv3Acc: 77%; Se: 76%; Sp: 79%
Table 3 Summary of artificial intelligence studies on the detection and characterization of gastric premalignant conditions[81,83-90,92,94-100]
Ref.
Purpose
Design
Training set
Test set
IEE
AI model
Performance
Zhang et al[92]Real-time Det of gastric polypsRCT708 i50 iWLISSD-GPNetmAP: 90%; PDR by > 10%
Zhang et al[99]Det of AGRetrospective3829 i1641 iWLI; i-scanCNN-CAGAcc: 94%; Se: 95%; Sp: 94%
Xu et al[85]AI vs exp/nonexp in Det of GPMCRetrospective multicenter5198 i1052 i; 98 vME-NBI; ME-BLIENDOANGELAG: Acc: 86% (i); 88% (v); GIM: Acc: 86% (i); 90% (v)
Lin et al[90]Det of AG/GIMRetrospective multicenter2193 i273 iWLITResNetAG: Acc: 96%; AUC: 0.98; Se: 96%; Sp: 96%; GIM: Acc: 98%; AUC: 0.99; Se: 98%; Sp: 97%
Watanabe et al[100]Det of gastric indefinite for dysplasia lesionsRetrospective2961 i248 iWLISSD + miR148a DNA methylationAUC: 0.93 (exp) > 0.83 (AI + miR148a) > 0.59 (trainees)
Kodaka et al[95]AG Det and OLGA staging in patients w/Helicobacter pylori infectionRetrospective11497 i7724 iWLIResNet-50AUC: 0.75 (AI + Kyoto) > 0.67 (AI + OLGA) > 0.66 (AI alone)
Zhao and Chi[98]Severity classification of AGAI vs endoscopistsProspective2922 i268 vNBIUNet(Increase) DR of mod AG (16% vs 8%) and severe AG (7% vs 3%); (decrease) unnecessary Bx
Zhao et al[89]Det of AGAI vs endoscopistsProspective case-control4175 i676 vNBIUNetAcc: 91% vs 72%; Se: 84% vs 63%; Sp: 97% vs 82%; AUC: 0.91 vs 0.74
Yang et al[81]Det of AG/GIMRetrospective21420 i5355 iWLI; LCISE-ResNetAG: Acc: 97%; Se: 99%; Sp: 95%; GIM: Acc: 99%; Se: 99%; Sp: 99%
Li et al[96]Severity classification of GIMRetrospective837 i278 iNBI; LCICDCNAcc: 84%
Shi et al[88]Det of AGRetrospective6216 i600 i; 118 vWLIGAM-EfficientNeti: Acc: 94%; Se: 93%; Sp: 94%; v: Acc: 92%; Se: 96%; Sp: 89%
Iwaya et al[87]Det of GIM and OLGIM stagingRetrospective5753 i1150 iHE slidesResNet-50Se: 98%; Sp: 95%; OLGIM stage III/IV classified in 18%
Fang et al[86]AI vs pathologists in Det and grading of AG/GIMProspective multicenter1745 i545 iPathology slidesGasMIL(Increase) pathologists’ performance (AUC: 0.95 vs 0.88)
Tao et al[97]AG Det and risk stratification vs expRetrospective5856 i869 i; 119 vWLIUNet ++ ResNet-50 ENDOANGEL(Increase) Se vs exp i: 93% vs 77%; v: 95% vs 86%
Niu et al[94]GIM grading and OLGIM stagingRetrospective multicenter470 i333 iME-NBIFaster R-CNNPred high-risk stage Acc: 84%
Zou et al[83]Det of Helicobacter pylori infection AI vs endoscopistsMulticenter RCT7377 i2080 iWLIEfficientNetAcc: 93% vs 76%; Se: 92% vs 79%; Sp: 93% vs 75%
Xu et al[84]AI vs exp/nonexp in Det of AG/GIMSingle center RCTNA1968 vWLIENDOANGEL(Increase) DR of AG: 23% vs 17%; (Increase) DR of GIM: 14% vs 9%
Table 4 Summary of artificial intelligence studies on the detection and characterization of early gastric cancer[101-108,110,112-117,119,122]
Ref.
Purpose
Design
Training set
Test set
IEE
AI model
Performance
Zhu et al[122]ID prediction of EGCRetrospective790 i203 iWLIResNet-50Acc: 89%; Se: 76%; Sp: 96%; AUC: 0.94
Horiuchi et al[112]AI vs exp in EGC DetRetrospective2570 i174 vME-NBIGoogLeNetAcc: 85%; Se: 95%; Sp: 71%; AUC: 0.87
Wu et al[108]Det of EGCMulticenter RCTNA1050 vWLIENDOANGELAcc: 85%; Se: 100%; Sp: 84%
Wu et al[107]Det of EGCRCTNA1812 vWLIENDOANGEL-LD(Decrease) miss rate (AI 6% vs endoscopists 27% RR = 0.22)
Wu et al[117]AI vs exp in ID and DS of EGCProspective multicenter1131 i100 vME-NBIENDOANGELID: Acc: 79% vs 64%; DS: Acc: 71% vs 64%
Wu et al[116]Real time Det of EGCProspective single center trial9824 i2010 vWLIENDOANGEL-LDAcc: 92%; Se: 92%; Sp: 92%; PPV: 25%; NPV: 100%
Ueyama et al[103]Det of EGCRetrospective5574 i2300 iME-NBIResNet-50Acc: 99%; Se: 99%; Sp: 98%
He et al[115]Det of EGCRetrospective multicenter4667 i4702 i; 187 vME-NBIENDOANGEL-MEAcc: 90%; Se: 93%; Sp: 94%
Li et al[110]AI vs exp in EGC DetRetrospective1630 i267 i; 77 vME-NBIENDOANGEL-LAi: Acc: 89%; Se: 86%; Sp: 92%; v: Acc: 87%; Se: 84%; Sp: 88%
Tang et al[114]Det of EGCRetrospective multicenter13151 i1577 i; 20 vNBIYOLOv3Acc: 93%; AUC: 0.95
Jin et al[113]Det of EGC AI vs expProspective5708 i1425 i; 10 vWLI; NBIMask R-CNNAcc: 90%; Se: 91%; Sp: 89%
Gong et al[106]Real-time Det and ID prediction of EGCRCT5017 i2524 vWLICDSSDR: 96%; ID Acc: 86%; lesion class: Acc: 82%
Lee et al[101]EGC pathological ChRetrospective4336 i; 153 v436 i; 89 vWLIENAD CAD-GAcc: UH: 90%; SMI: 88%; LVI: 88%; LNM: 93%
Chang et al[119]Classification of EGCRetrospective real-world data21918 i6785 i; 296 vWLIENAD CAD-Gi: Acc: EGC: 82%; dysplasia: 88%; v: Acc: EGC: 88%; dysplasia: 91%
Zhao et al[102]Det of EGC LCI vs WLIRetrospective9021 i116 vWLI; LCICADe(Increase) Se: LCI: 94% vs WLI: 79%; Sp: 93% in both
Lee et al[101]Det of EGCRetrospective30000 i500 iWLICADe (ALPHAON®)Acc: 88%; Se: 93%; Sp: 87%; AUC: 0.96
Soong et al[105]Raman spectroscopy for EGC risk stratRCTNA25 vWLISPECTRA IMDx™Acc: 100%; Se: 80%; Sp: 92%
Feng et al[104]AI vs exp/nonexp in EGC DetProspective12000 i1289 i; 130 vWLIDCNNSe: 97%; Sp: 89%; AUC: 0.93
Table 5 Summary of artificial intelligence studies on the detection of polyps and protruding lesions by video capsule endoscopy or small bowel endoscopy[135,138-140,213-221]
Ref.
Endoscopy type
Study design
Training set
Test set
AI model
Performance
Barbosa et al[135]VCERetrospective104 tumors, 100 normal700 tumors, 2300 normalCNNSe: 94%; Sp: 93%
Li and Meng[213]VCERetrospective540 tumors, 540 normal60 tumors, 60 normalML (SVM)Acc: 84%; Se: 82%; Sp: 8%
Constantinescu et al[138]VCEProspective54 videos90 images (32 polyps, 58 normal)ANNAcc: 98%; Se: 94%; Sp: 91%
Liu et al[214]VCERetrospective1800 (105 patients, 89 videos)89 videos (15 tumors, 74 normal)ML (SVM)Se: 98%; Sp: 97%
Faghih Dinevari et al[215]VCERetrospective300 tumors, 300 normal100 tumors, 100 normalML (SVM)Acc: 94%; Se: 94%; Sp: 93%
Yuan and Meng[216]VCERetrospective1000 polyps, 3000 normal200 tumors, 600 normalDLAcc: 98%
Ding et al[217]VCERetrospective158, 235113, 268, 334CNNSe: PPA: 99.9%; PLA: 99.9%; Sp: PPA and PLA: 100%
Saito et al[218]VCERetrospective30, 58417507 (7507 protruding lesions)CNNSe: 91%; Sp: 80%
Xie et al[219]VCERetrospective148, 357, 922146, 956, 145CNNSe: 99%
Cardoso et al[139]EnteroscopyRetrospective6340507 protruding lesions, 1078 normalCNNAcc: 97%; Se: 97%; Sp: 97%
Inoue et al[220]EGDRetrospective5311080CNNSe: 95%; Sp: 87%
Ding et al[221]VCERetrospective280, 426240 videosCNNAcc: 81%; Se: 96%; Sp: 98%
Zhu et al[140]DBERetrospective82223148CNNDet model: Se: 92%; Sp: 93%; Class model: Se: 80%-93%; Acc: 86%
Table 6 Summary of retrospective and prospective studies on computer aided detection for detecting colorectal polyps[150,222-229]
Ref.
Study design
Number
Country
Outcomes
Park et al[222]Retrospective ex vivo562 imagesUnited StatesSe: 86%; Sp: 85%
Billah et al[223]Retrospective ex vivo14000 imagesBangladeshSe: 99%; Sp: 99%
Lequan et al[224]Retrospective ex vivo38 videosChinaSe: 71%; PPV: 88%
Zhang et al[225]Retrospective ex vivo2442 imagesChinaSe: 98%; PPV: 99%; Acc: 86%
Misawa et al[226]Retrospective ex vivo546 videosJapanPer-frame Se: 90%; Sp: 63%; Acc: 76%; Per-polyp Se: 94%
Urban et al[150]Retrospective ex vivo63559 images, 40 videosUnited StatesSe: 90%; Acc: 96%
Yamada et al[227]Retrospective ex vivo144823 video imagesJapanSe: 97%; Sp: 99%
Klare et al[228]Prospective in vivo55 colonoscopiesGermanyPer-polyp Se: 75%; ADR: 29%; PDR: 51% (31% and 56% in endoscopist)
Ozawa et al[229]Ex vivo23495 imagesJapanSe: 92%; PPV: 93%; Acc: 85%
Table 7 Summary of randomized controlled trials on computer aided detection for the detection of colorectal polyps[151-159,166,175-178,230-235]
Ref.
Study design
Number of patients
Country
Outcomes (AI vs control)
Wang et al[151]Single center RCT1058ChinaADR: 29% vs 20%
Wang et al[156]Single center RCT (double blind)962ChinaADR: 34% vs 28%
Gong et al[157]Single center RCT704ChinaADR: 16% vs 8%
Su et al[158]Single center RCT659ChinaADR: 29% vs 17%
Liu et al[159]RCT1026ChinaADR: 39% vs 23%
Wang et al[175]Tandem RCT369ChinaAMR: 14% vs 40%
Repici et al[152]Multicenter RCT685ItalyADR: 55% vs 40%
Kamba et al[176]Tandem RCT358JapanAMR: 14% vs 37%
Glissen Brown et al[177]Multicenter tandem RCT223United StatesAMR: 20% vs 31%
Repici et al[153]RCT660Italy, SwitzerlandADR: 53% vs 45%
Wallace et al[178]Tandem RCT240Italy, United Kingdom, United StatesAMR: 16% vs 32%
Shaukat et al[166]RCT1359United StatesAPC: 1 vs 0.8
Xu et al[230]Multicenter RCT3059ChinaADR: 40% vs 32%
Gimeno-García et al[231]Single center RCT370SpainADR: 55% vs 41%
Nakashima et al[154]Single center RCT415JapanADR: 59% vs 48%
Karsenti et al[232]Single center RCT2592FranceADR: 38% vs 34%
Lau et al[155]Single center RCT766ChinaADR: 58% vs 45%
Maas et al[233]Multicenter RCT916Germany, Netherlands, United States, IsraelADR: AI 37% vs 30%
Thiruvengadam et al[234]Single center RCT1100United StatesADR: 43% vs 34%
Park et al[235]Multicenter RCT805KoreaADR: 35% vs 28%
Table 8 Summary of retrospective studies on computer-aided diagnosis for characterization of colorectal polyps[185,188-192,195,196,229,236-238]
Ref.
Country
AI system
Number
WLI/IEE
Primary outcomes
Results
Tischendorf et al[236]GermanySVM209 polypsMagnifying NBIAdenomas vs non adenomasSe: 90%; Sp: 70%; Acc: 85%
Takemura et al[237]JapanSVM1519 polyps, 371 imagesMagnifying NBINeoplastic vs non neoplasticSe: 97%; Sp: 97%; Acc: 97%
Misawa et al[195]JapanEndoBRAIN1179 imagesEndocytoscopy, NBIPrediction of histologySe: 84%; Sp: 97%; Acc: 90%; PPV: 98%; NPV: 82%
Komeda et al[188]JapanCNN1800 images, 10 videosWLIAdenomas vs non adenomasAcc: 75%
Byrne et al[185]CanadaDCNN117000 images, 388 videosNBIAdenomas vs non adenomas (DP)Se: 98%; Sp: 83%; PPV: 90%; NPV: 97%; Acc: 94%
Chen et al[238]ChinaDCNN2441 imagesNBINeoplastic vs hyperplastic (DP)Se: 96%; Sp: 78%; PPV: 89%; NPV: 90%; Acc: 90%
Sánchez-Montes et al[189]SpainML225 polypsHD WLIAdenomas vs non adenomas (DP)Se: 92%; NPV: 91%; Acc: 90%; DP: NPV: 96%; Acc: 87%
Song et al[190]KoreaENAD12480 images, 451 polypsNBIAdenomas vs SSLsSe: 82% vs 84%; Sp: 93% vs 88%; Acc: 81% vs 82%
Kudo et al[196]JapanEndoBRAIN-EYE69142 imagesEndocytoscopy, NBINeoplastic vs non neoplasticSe: 96%; Sp: 94%; PPV: 96%; NPV: 94%; Acc: 96%
Zachariah et al[192]United StatesCAD-EYE5912 imagesWLI, NBIDiminutive adenomas vs SSLs/hyperplastic polypsSe: 96%; Sp: 90%; PPV: 94%; NPV: 93%; Acc: 94%
Jin et al[191]KoreaDCNN2450 polypsNBIAdenomas vs non adenomas (DP)Se: 83%; Sp: 91%; Acc: 87%
Ozawa et al[229]JapanDCNN (SSD)27508 imagesWLI, NBIAdenomas vs non adenomas (DP)WLI: NPV: 85%; NBI: NPV: 91%
Table 9 Summary of prospective studies on computer-aided diagnosis for the characterization of colorectal polyps[194,200,201,208,209,239-243]
Ref.
Country
AI system
Number
WLI/IEE
Primary outcomes
Results
Gross et al[239]GermanySVM434 small polyps (< 10 mm)Magnifying NBIAdenomas vs non adenomas (small polyps)Se: 95%; Sp: 90%; PPV: 93%; NPV: 92%; Acc: 93%
Kominami et al[240]JapanSVM1262 polyps, 118 imagesMagnifying NBIAdenomas vs non adenomas (small polyps)Se: 93%; Sp: 95%; PPV: 95%; NPV: 93%; Acc: 97%
Mori et al[194]JapanEndoBRAIN61952 images, 466 polypsEndocytoscopy, NBIAdenomas vs non adenomas (DP)Se: 95%; Sp: 92%; PPV: 96%; NPV: 96%; Acc: 98%
Barua et al[208]Norway, United Kingdom, JapanEndoBRAIN892 polypsWLI, NBI, magnificationNeoplastic vs non neoplastic polyps (DP)Se: 90%; Sp: 86%
Hassan et al[242]ItalyGI genius544 polypsNBI, BLIAdenomas vs non adenomas (DP)NPV: 98%; Se: 82%; Sp: 93%; Acc: 92%
Minegishi et al[200]JapanEndoBRAIN395 polypsNBIAdenomas vs non adenomas (DP)NPV: 94%; Se: 94%; Sp: 63%; Acc: 86%
Rondonotti et al[209]ItalyCAD EYE596 polypsWLIAdenomas vs non adenomas (DP)NPV: 91%; Se: 89%; Sp: 88%; Acc: 88%
Li et al[241]Singapore (multicenter)CAD EYE661 polypsWLINeoplastic vs non neoplastic polypsSe: 62%; Acc: 72%
Hassan et al[242]ItalyCAD EYE; GI genius (head-to-head comparison)319 polypsWLI, BLIAdenomas vs non adenomas (DP)NPV: 97% vs 98%; Se: 82% vs 86%; Sp: 92% vs 94%
Houwen et al[201]Netherlands (multicenter) + Spain (1 center)POLAR423 polypsNBINeoplastic (adenomas and SSLs) vs non neoplasticSe: 89%; Sp: 38%; Acc: 79%
Rex et al[243]United States (multicenter)GI genius2695 polypsWLI, NBIAdenomas vs non adenomasSe: 91%; Sp: 65%